Coverage for qml_essentials/model.py: 93%

404 statements  

« prev     ^ index     » next       coverage.py v7.9.2, created at 2025-09-08 14:29 +0000

1from typing import Dict, Optional, Tuple, Callable, Union, List 

2import pennylane as qml 

3import pennylane.numpy as np 

4import hashlib 

5import os 

6import warnings 

7from autograd.numpy import numpy_boxes 

8from copy import deepcopy 

9import math 

10 

11from qml_essentials.ansaetze import Gates, Ansaetze, Circuit 

12from qml_essentials.utils import PauliCircuit, QuanTikz, MultiprocessingPool 

13 

14 

15import logging 

16 

17log = logging.getLogger(__name__) 

18 

19 

20class Model: 

21 """ 

22 A quantum circuit model. 

23 """ 

24 

25 lightning_threshold = 12 

26 cpu_scaler = 0.9 # default cpu scaler, =1 means full CPU for MP 

27 

28 def __init__( 

29 self, 

30 n_qubits: int, 

31 n_layers: int, 

32 circuit_type: Union[str, Circuit] = "No_Ansatz", 

33 data_reupload: Union[bool, List[bool], List[List[bool]]] = True, 

34 state_preparation: Union[str, Callable, List[str], List[Callable]] = None, 

35 encoding: Union[str, Callable, List[str], List[Callable]] = Gates.RX, 

36 trainable_frequencies: bool = False, 

37 initialization: str = "random", 

38 initialization_domain: List[float] = [0, 2 * np.pi], 

39 output_qubit: Union[List[int], int] = -1, 

40 shots: Optional[int] = None, 

41 random_seed: int = 1000, 

42 as_pauli_circuit: bool = False, 

43 remove_zero_encoding: bool = True, 

44 mp_threshold: int = -1, 

45 ) -> None: 

46 """ 

47 Initialize the quantum circuit model. 

48 Parameters will have the shape [impl_n_layers, parameters_per_layer] 

49 where impl_n_layers is the number of layers provided and added by one 

50 depending if data_reupload is True and parameters_per_layer is given by 

51 the chosen ansatz. 

52 

53 The model is initialized with the following parameters as defaults: 

54 - noise_params: None 

55 - execution_type: "expval" 

56 - shots: None 

57 

58 Args: 

59 n_qubits (int): The number of qubits in the circuit. 

60 n_layers (int): The number of layers in the circuit. 

61 circuit_type (str, Circuit): The type of quantum circuit to use. 

62 If None, defaults to "no_ansatz". 

63 data_reupload (Union[bool, List[bool], List[List[bool]]], optional): 

64 Whether to reupload data to the quantum device on each 

65 layer and qubit. Detailed re-uploading instructions can be given 

66 as a list/array of 0/False and 1/True with shape (n_qubits, 

67 n_layers) to specify where to upload the data. Defaults to True 

68 for applying data re-uploading to the full circuit. 

69 encoding (Union[str, Callable, List[str], List[Callable]], optional): 

70 The unitary to use for encoding the input data. Can be a string 

71 (e.g. "RX") or a callable (e.g. qml.RX). Defaults to qml.RX. 

72 If input is multidimensional it is assumed to be a list of 

73 unitaries or a list of strings. 

74 trainable_frequencies (bool, optional): 

75 Sets trainable encoding parameters for trainable frequencies. 

76 Defaults to False. 

77 initialization (str, optional): The strategy to initialize the parameters. 

78 Can be "random", "zeros", "zero-controlled", "pi", or "pi-controlled". 

79 Defaults to "random". 

80 output_qubit (List[int], int, optional): The index of the output 

81 qubit (or qubits). When set to -1 all qubits are measured, or a 

82 global measurement is conducted, depending on the execution 

83 type. 

84 shots (Optional[int], optional): The number of shots to use for 

85 the quantum device. Defaults to None. 

86 random_seed (int, optional): seed for the random number generator 

87 in initialization is "random" and for random noise parameters. 

88 Defaults to 1000. 

89 as_pauli_circuit (bool, optional): whether the circuit is 

90 transformed to a Pauli-Clifford circuit as described by Nemkov 

91 et al. (https://doi.org/10.1103/PhysRevA.108.032406), which is 

92 required for analytical Fourier coefficient computation. 

93 Defaults to False. 

94 remove_zero_encoding (bool, optional): whether to 

95 remove the zero encoding from the circuit. Defaults to True. 

96 mp_threshold (int, optional): threshold above which the parameter 

97 batch dimension is split across multiple processes. 

98 Defaults to -1. 

99 

100 Returns: 

101 None 

102 """ 

103 # Initialize default parameters needed for circuit evaluation 

104 self.noise_params: Optional[Dict[str, Union[float, Dict[str, float]]]] = None 

105 self.execution_type: Optional[str] = "expval" 

106 self.shots = shots 

107 self.remove_zero_encoding = remove_zero_encoding 

108 self.mp_threshold = mp_threshold 

109 self.n_qubits: int = n_qubits 

110 self.n_layers: int = n_layers 

111 self.trainable_frequencies: bool = trainable_frequencies 

112 

113 if isinstance(output_qubit, list): 

114 assert ( 

115 len(output_qubit) <= n_qubits 

116 ), f"Size of output_qubit {len(output_qubit)} cannot be\ 

117 larger than number of qubits {n_qubits}." 

118 self.output_qubit: Union[List[int], int] = output_qubit 

119 

120 # Initialize rng in Gates 

121 Gates.init_rng(random_seed) 

122 

123 # --- State Preparation --- 

124 # first check if we have a str, list or callable 

125 if isinstance(state_preparation, str): 

126 # if str, use the pennylane fct 

127 self._sp = [getattr(Gates, f"{state_preparation}")] 

128 elif isinstance(state_preparation, list): 

129 # if list, check if str or callable 

130 if isinstance(state_preparation[0], str): 

131 self._sp = [getattr(Gates, f"{sp}") for sp in state_preparation] 

132 else: 

133 self._sp = state_preparation 

134 elif state_preparation is None: 

135 self._sp = [lambda *args, **kwargs: None] 

136 else: 

137 # default to callable 

138 self._sp = [state_preparation] 

139 

140 # --- Encoding --- 

141 # first check if we have a str, list or callable 

142 if isinstance(encoding, str): 

143 # if str, use the pennylane fct 

144 self._enc = [getattr(Gates, f"{encoding}")] 

145 elif isinstance(encoding, list): 

146 # if list, check if str or callable 

147 if isinstance(encoding[0], str): 

148 self._enc = [getattr(Gates, f"{enc}") for enc in encoding] 

149 else: 

150 self._enc = encoding 

151 else: 

152 # default to callable 

153 self._enc = [encoding] 

154 

155 # Number of possible inputs 

156 self.n_input_feat = len(self._enc) 

157 log.info(f"Number of input features: {self.n_input_feat}") 

158 

159 # Trainable frequencies, default initialization as in arXiv:2309.03279v2 

160 self.enc_params = np.ones( 

161 (self.n_qubits, self.n_input_feat), requires_grad=trainable_frequencies 

162 ) 

163 

164 # --- Data-Reuploading --- 

165 # Process data reuploading strategy and set degree 

166 if not isinstance(data_reupload, bool): 

167 if not isinstance(data_reupload, np.ndarray): 

168 data_reupload = np.array(data_reupload) 

169 if data_reupload.shape == ( 

170 n_layers, 

171 n_qubits, 

172 ): 

173 data_reupload = data_reupload.reshape(*data_reupload.shape, 1) 

174 data_reupload = np.repeat(data_reupload, self.n_input_feat, axis=2) 

175 

176 assert data_reupload.shape == ( 

177 n_layers, 

178 n_qubits, 

179 self.n_input_feat, 

180 ), f"Data reuploading array has wrong shape. \ 

181 Expected {(n_layers, n_qubits)} or\ 

182 {(n_layers, n_qubits, self.n_input_feat)},\ 

183 got {data_reupload.shape}." 

184 

185 log.debug(f"Data reuploading array:\n{data_reupload}") 

186 else: 

187 if data_reupload: 

188 impl_n_layers: int = ( 

189 n_layers + 1 

190 ) # we need L+1 according to Schuld et al. 

191 data_reupload = np.ones((n_layers, n_qubits, self.n_input_feat)) 

192 log.debug("Full data reuploading.") 

193 else: 

194 impl_n_layers: int = n_layers 

195 data_reupload = np.zeros((n_layers, n_qubits, self.n_input_feat)) 

196 data_reupload[0][0] = 1 

197 log.debug("No data reuploading.") 

198 

199 # convert to boolean values 

200 self.data_reupload = data_reupload.astype(bool) 

201 self.frequencies = [ 

202 np.count_nonzero(self.data_reupload[..., i]) 

203 for i in range(self.n_input_feat) 

204 ] 

205 

206 if self.degree > 1: 

207 impl_n_layers: int = n_layers + 1 # we need L+1 according to Schuld et al. 

208 else: 

209 impl_n_layers = n_layers 

210 log.info(f"Number of implicit layers: {impl_n_layers}.") 

211 

212 # --- Ansatz --- 

213 # only weak check for str. We trust the user to provide sth useful 

214 if isinstance(circuit_type, str): 

215 self.pqc: Callable[[Optional[np.ndarray], int], int] = getattr( 

216 Ansaetze, circuit_type or "No_Ansatz" 

217 )() 

218 else: 

219 self.pqc = circuit_type() 

220 log.info(f"Using Ansatz {circuit_type}.") 

221 

222 # calculate the shape of the parameter vector here, we will re-use this in init. 

223 params_per_layer = self.pqc.n_params_per_layer(self.n_qubits) 

224 self._params_shape: Tuple[int, int] = (impl_n_layers, params_per_layer) 

225 log.info(f"Parameters per layer: {params_per_layer}") 

226 

227 self.batch_shape = (1, 1) 

228 # this will also be re-used in the init method, 

229 # however, only if nothing is provided 

230 self._inialization_strategy = initialization 

231 self._initialization_domain = initialization_domain 

232 

233 # ..here! where we only require a rng 

234 self.initialize_params(np.random.default_rng(random_seed)) 

235 

236 # Initialize two circuits, one with the default device and 

237 # one with the mixed device 

238 # which allows us to later route depending on the state_vector flag 

239 self.as_pauli_circuit = as_pauli_circuit 

240 

241 self.circuit_mixed: qml.QNode = qml.QNode( 

242 self._circuit, 

243 qml.device("default.mixed", shots=self.shots, wires=self.n_qubits), 

244 interface="autograd" if self.shots is not None else "auto", 

245 diff_method="parameter-shift" if self.shots is not None else "best", 

246 ) 

247 

248 @property 

249 def degree(self): 

250 return max(self.frequencies) 

251 

252 @property 

253 def as_pauli_circuit(self) -> bool: 

254 return self._as_pauli_circuit 

255 

256 @as_pauli_circuit.setter 

257 def as_pauli_circuit(self, value: bool) -> None: 

258 self._as_pauli_circuit = value 

259 

260 if self.n_qubits < self.lightning_threshold: 

261 device = "default.qubit" 

262 else: 

263 device = "lightning.qubit" 

264 self.mp_threshold = -1 

265 

266 self.circuit: qml.QNode = qml.QNode( 

267 self._circuit, 

268 qml.device( 

269 device, 

270 shots=self.shots, 

271 wires=self.n_qubits, 

272 ), 

273 interface="autograd" if self.shots is not None else "auto", 

274 diff_method="parameter-shift" if self.shots is not None else "best", 

275 ) 

276 

277 if value: 

278 pauli_circuit_transform = qml.transform( 

279 PauliCircuit.from_parameterised_circuit 

280 ) 

281 self.circuit = pauli_circuit_transform(self.circuit) 

282 

283 @property 

284 def noise_params(self) -> Optional[Dict[str, Union[float, Dict[str, float]]]]: 

285 """ 

286 Gets the noise parameters of the model. 

287 

288 Returns: 

289 Optional[Dict[str, float]]: A dictionary of 

290 noise parameters or None if not set. 

291 """ 

292 return self._noise_params 

293 

294 @noise_params.setter 

295 def noise_params( 

296 self, kvs: Optional[Dict[str, Union[float, Dict[str, float]]]] 

297 ) -> None: 

298 """ 

299 Sets the noise parameters of the model. 

300 

301 Typically a "noise parameter" refers to the error probability. 

302 ThermalRelaxation is a special case, and supports a dict as value with 

303 structure: 

304 "ThermalRelaxation": 

305 { 

306 "t1": 2000, # relative t1 time. 

307 "t2": 1000, # relative t2 time 

308 "t_factor" 1: # relative gate time factor 

309 }, 

310 

311 Args: 

312 kvs (Optional[Dict[str, Union[float, Dict[str, float]]]]): A 

313 dictionary of noise parameters. If all values are 0.0, the noise 

314 parameters are set to None. 

315 

316 Returns: 

317 None 

318 """ 

319 # set to None if only zero values provided 

320 if kvs is not None and all(np == 0.0 for np in kvs.values()): 

321 kvs = None 

322 

323 # set default values 

324 if kvs is not None: 

325 kvs.setdefault("BitFlip", 0.0) 

326 kvs.setdefault("PhaseFlip", 0.0) 

327 kvs.setdefault("Depolarizing", 0.0) 

328 kvs.setdefault("MultiQubitDepolarizing", 0.0) 

329 kvs.setdefault("AmplitudeDamping", 0.0) 

330 kvs.setdefault("PhaseDamping", 0.0) 

331 kvs.setdefault("GateError", 0.0) 

332 kvs.setdefault("ThermalRelaxation", None) 

333 kvs.setdefault("StatePreparation", 0.0) 

334 kvs.setdefault("Measurement", 0.0) 

335 

336 # check if there are any keys not supported 

337 for key in kvs.keys(): 

338 if key not in [ 

339 "BitFlip", 

340 "PhaseFlip", 

341 "Depolarizing", 

342 "MultiQubitDepolarizing", 

343 "AmplitudeDamping", 

344 "PhaseDamping", 

345 "GateError", 

346 "ThermalRelaxation", 

347 "StatePreparation", 

348 "Measurement", 

349 ]: 

350 warnings.warn( 

351 f"Noise type {key} is not supported by this package", 

352 UserWarning, 

353 ) 

354 

355 # check valid params for thermal relaxation noise channel 

356 tr_params = kvs["ThermalRelaxation"] 

357 if isinstance(tr_params, dict): 

358 tr_params.setdefault("t1", 0.0) 

359 tr_params.setdefault("t2", 0.0) 

360 tr_params.setdefault("t_factor", 0.0) 

361 for k in tr_params.keys(): 

362 if k not in [ 

363 "t1", 

364 "t2", 

365 "t_factor", 

366 ]: 

367 warnings.warn( 

368 f"Thermal Relaxation parameter {k} is not supported " 

369 f"by this package", 

370 UserWarning, 

371 ) 

372 if not all(tr_params.values()) or tr_params["t2"] > 2 * tr_params["t1"]: 

373 warnings.warn( 

374 "Received invalid values for Thermal Relaxation noise " 

375 "parameter. Thermal relaxation is not applied!", 

376 UserWarning, 

377 ) 

378 kvs["ThermalRelaxation"] = 0.0 

379 

380 self._noise_params = kvs 

381 

382 @property 

383 def execution_type(self) -> str: 

384 """ 

385 Gets the execution type of the model. 

386 

387 Returns: 

388 str: The execution type, one of 'density', 'expval', or 'probs'. 

389 """ 

390 return self._execution_type 

391 

392 @execution_type.setter 

393 def execution_type(self, value: str) -> None: 

394 if value not in ["density", "state", "expval", "probs"]: 

395 raise ValueError(f"Invalid execution type: {value}.") 

396 

397 if (value == "density" or value == "state") and self.output_qubit != -1: 

398 warnings.warn( 

399 f"{value} measurement does ignore output_qubit, which is " 

400 f"{self.output_qubit}.", 

401 UserWarning, 

402 ) 

403 

404 if value == "probs" and self.shots is None: 

405 warnings.warn( 

406 "Setting execution_type to probs without specifying shots.", 

407 UserWarning, 

408 ) 

409 

410 if value == "density" and self.shots is not None: 

411 warnings.warn( 

412 "Setting execution_type to density with specified shots.", 

413 UserWarning, 

414 ) 

415 

416 self._execution_type = value 

417 

418 @property 

419 def shots(self) -> Optional[int]: 

420 """ 

421 Gets the number of shots to use for the quantum device. 

422 

423 Returns: 

424 Optional[int]: The number of shots. 

425 """ 

426 return self._shots 

427 

428 @shots.setter 

429 def shots(self, value: Optional[int]) -> None: 

430 """ 

431 Sets the number of shots to use for the quantum device. 

432 

433 Args: 

434 value (Optional[int]): The number of shots. 

435 If an integer less than or equal to 0 is provided, it is set to None. 

436 

437 Returns: 

438 None 

439 """ 

440 if type(value) is int and value <= 0: 

441 value = None 

442 self._shots = value 

443 

444 def initialize_params( 

445 self, 

446 rng: np.random.Generator, 

447 repeat: int = None, 

448 initialization: str = None, 

449 initialization_domain: List[float] = None, 

450 ) -> None: 

451 """ 

452 Initializes the parameters of the model. 

453 

454 Args: 

455 rng: A random number generator to use for initialization. 

456 repeat: The number of times to repeat the parameters. 

457 If None, the number of layers is used. 

458 initialization: The strategy to use for parameter initialization. 

459 If None, the strategy specified in the constructor is used. 

460 initialization_domain: The domain to use for parameter initialization. 

461 If None, the domain specified in the constructor is used. 

462 

463 Returns: 

464 None 

465 """ 

466 params_shape = ( 

467 self._params_shape if repeat is None else [*self._params_shape, repeat] 

468 ) 

469 # use existing strategy if not specified 

470 initialization = initialization or self._inialization_strategy 

471 initialization_domain = initialization_domain or self._initialization_domain 

472 

473 def set_control_params(params: np.ndarray, value: float) -> np.ndarray: 

474 indices = self.pqc.get_control_indices(self.n_qubits) 

475 if indices is None: 

476 warnings.warn( 

477 f"Specified {initialization} but circuit\ 

478 does not contain controlled rotation gates.\ 

479 Parameters are intialized randomly.", 

480 UserWarning, 

481 ) 

482 else: 

483 params[:, indices[0] : indices[1] : indices[2]] = ( 

484 np.ones_like(params[:, indices[0] : indices[1] : indices[2]]) 

485 * value 

486 ) 

487 return params 

488 

489 if initialization == "random": 

490 self.params: np.ndarray = rng.uniform( 

491 *initialization_domain, params_shape, requires_grad=True 

492 ) 

493 elif initialization == "zeros": 

494 self.params: np.ndarray = np.zeros(params_shape, requires_grad=True) 

495 elif initialization == "pi": 

496 self.params: np.ndarray = np.ones(params_shape, requires_grad=True) * np.pi 

497 elif initialization == "zero-controlled": 

498 self.params: np.ndarray = rng.uniform( 

499 *initialization_domain, params_shape, requires_grad=True 

500 ) 

501 self.params = set_control_params(self.params, 0) 

502 elif initialization == "pi-controlled": 

503 self.params: np.ndarray = rng.uniform( 

504 *initialization_domain, params_shape, requires_grad=True 

505 ) 

506 self.params = set_control_params(self.params, np.pi) 

507 else: 

508 raise Exception("Invalid initialization method") 

509 

510 log.info( 

511 f"Initialized parameters with shape {self.params.shape}\ 

512 using strategy {initialization}." 

513 ) 

514 

515 def transform_input(self, inputs: np.ndarray, enc_params: Optional[np.ndarray]): 

516 """ 

517 Transforms the input as in arXiv:2309.03279v2 

518 

519 Args: 

520 inputs (np.ndarray): single input point of shape (1, n_input_feat) 

521 idx (int): feature index 

522 qubit (int): qubit on which to the encoding is being performed 

523 enc_params (np.ndarray): encoding weight vector of 

524 shape (n_qubits) 

525 

526 Returns: 

527 np.ndarray: transformed input of shape (1,), linearly scaled by 

528 enc_params, ready for encoding 

529 """ 

530 return inputs * enc_params 

531 

532 def _iec( 

533 self, 

534 inputs: np.ndarray, 

535 data_reupload: np.ndarray, 

536 enc: Union[Callable, List[Callable]], 

537 enc_params: np.ndarray, 

538 noise_params: Optional[Dict[str, Union[float, Dict[str, float]]]] = None, 

539 ) -> None: 

540 """ 

541 Creates an AngleEncoding using RX gates 

542 

543 Args: 

544 inputs (np.ndarray): single input point of shape (1, n_input_feat) 

545 data_reupload (np.ndarray): Boolean array to indicate positions in 

546 the circuit for data re-uploading for the IEC, shape is 

547 (n_qubits, n_layers). 

548 enc: Callable or List[Callable]: encoding function or list of encoding 

549 functions 

550 enc_params (np.ndarray): encoding weight vector 

551 of shape [n_qubits, n_inputs] 

552 noise_params (Optional[Dict[str, Union[float, Dict[str, float]]]]): 

553 The noise parameters. 

554 Returns: 

555 None 

556 """ 

557 # check for zero, because due to input validation, input cannot be none 

558 if self.remove_zero_encoding and not inputs.any(): 

559 return 

560 

561 for q in range(self.n_qubits): 

562 for idx in range(inputs.shape[1]): 

563 if data_reupload[q, idx]: 

564 enc[idx]( 

565 self.transform_input(inputs[:, idx], enc_params[q, idx]), 

566 wires=q, 

567 noise_params=noise_params, 

568 ) 

569 

570 def _circuit( 

571 self, 

572 params: np.ndarray, 

573 inputs: np.ndarray, 

574 enc_params: Optional[np.ndarray] = None, 

575 ) -> Union[float, np.ndarray]: 

576 """ 

577 Creates a circuit with noise. 

578 

579 Args: 

580 params (np.ndarray): weight vector of shape 

581 [n_layers, n_qubits*(n_params_per_layer+trainable_frequencies)] 

582 inputs (np.ndarray): input vector of size 1 

583 enc_params Optional[np.ndarray]: encoding weight vector 

584 of shape [n_qubits, n_inputs] 

585 Returns: 

586 Union[float, np.ndarray]: Expectation value of PauliZ(0) 

587 of the circuit if state_vector is False and expval is True, 

588 otherwise the density matrix of all qubits. 

589 """ 

590 

591 self._variational(params=params, inputs=inputs, enc_params=enc_params) 

592 return self._observable() 

593 

594 def _variational(self, params, inputs, enc_params=None): 

595 if enc_params is None: 

596 warnings.warn( 

597 "Explicit call to `_circuit` or `_variational` detected: " 

598 "`enc_params` is None, using `self.enc_params` instead.", 

599 RuntimeWarning, 

600 ) 

601 enc_params = self.enc_params 

602 

603 if self.noise_params is not None: 

604 self._apply_state_prep_noise() 

605 

606 # state preparation 

607 for q in range(self.n_qubits): 

608 for _sp in self._sp: 

609 _sp(wires=q, noise_params=self.noise_params) 

610 

611 # circuit building 

612 for layer in range(0, self.n_layers): 

613 # ansatz layers 

614 self.pqc(params[layer], self.n_qubits, noise_params=self.noise_params) 

615 

616 # encoding layers 

617 self._iec( 

618 inputs, 

619 data_reupload=self.data_reupload[layer], 

620 enc=self._enc, 

621 enc_params=enc_params, 

622 noise_params=self.noise_params, 

623 ) 

624 

625 # visual barrier 

626 if self.degree > 1: 

627 qml.Barrier(wires=list(range(self.n_qubits)), only_visual=True) 

628 

629 # final ansatz layer 

630 if self.degree > 1: # same check as in init 

631 self.pqc(params[-1], self.n_qubits, noise_params=self.noise_params) 

632 

633 # channel noise 

634 if self.noise_params is not None: 

635 self._apply_general_noise() 

636 

637 def _observable(self): 

638 # run mixed simualtion and get density matrix 

639 if self.execution_type == "density": 

640 return qml.density_matrix(wires=list(range(self.n_qubits))) 

641 elif self.execution_type == "state": 

642 return qml.state() 

643 # run default simulation and get expectation value 

644 elif self.execution_type == "expval": 

645 # n-local measurement 

646 if self.output_qubit == -1: 

647 return [qml.expval(qml.PauliZ(q)) for q in range(self.n_qubits)] 

648 # local measurement(s) 

649 elif isinstance(self.output_qubit, int): 

650 return qml.expval(qml.PauliZ(self.output_qubit)) 

651 # parity measurenment 

652 elif isinstance(self.output_qubit, list): 

653 obs = qml.PauliZ(self.output_qubit[0]) 

654 for out_qubit in self.output_qubit[1:]: 

655 obs = obs @ qml.PauliZ(out_qubit) 

656 return qml.expval(obs) 

657 else: 

658 raise ValueError( 

659 f"Invalid parameter `output_qubit`: {self.output_qubit}.\ 

660 Must be int, list or -1." 

661 ) 

662 # run default simulation and get probs 

663 elif self.execution_type == "probs": 

664 if self.output_qubit == -1: 

665 return qml.probs(wires=list(range(self.n_qubits))) 

666 else: 

667 return qml.probs(wires=self.output_qubit) 

668 else: 

669 raise ValueError(f"Invalid execution_type: {self.execution_type}.") 

670 

671 def _apply_state_prep_noise(self) -> None: 

672 """ 

673 Applies a state preparation error on each qubit according to the 

674 probability for StatePreparation provided in the noise_params. 

675 """ 

676 p = self.noise_params.get("StatePreparation", 0.0) 

677 for q in range(self.n_qubits): 

678 if p > 0: 

679 qml.BitFlip(p, wires=q) 

680 

681 def _apply_general_noise(self) -> None: 

682 """ 

683 Applies general types of noise the full circuit (in contrast to gate 

684 errors, applied directly at gate level, see Gates.Noise). 

685 

686 Possible types of noise are: 

687 - AmplitudeDamping (specified through probability) 

688 - PhaseDamping (specified through probability) 

689 - ThermalRelaxation (specified through a dict, containing keys 

690 "t1", "t2", "t_factor") 

691 - Measurement (specified through probability) 

692 """ 

693 amp_damp = self.noise_params.get("AmplitudeDamping", 0.0) 

694 phase_damp = self.noise_params.get("PhaseDamping", 0.0) 

695 thermal_relax = self.noise_params.get("ThermalRelaxation", 0.0) 

696 meas = self.noise_params.get("Measurement", 0.0) 

697 for q in range(self.n_qubits): 

698 if amp_damp > 0: 

699 qml.AmplitudeDamping(amp_damp, wires=q) 

700 if phase_damp > 0: 

701 qml.PhaseDamping(phase_damp, wires=q) 

702 if meas > 0: 

703 qml.BitFlip(meas, wires=q) 

704 if isinstance(thermal_relax, dict): 

705 t1 = thermal_relax["t1"] 

706 t2 = thermal_relax["t2"] 

707 t_factor = thermal_relax["t_factor"] 

708 circuit_depth = self._get_circuit_depth() 

709 tg = circuit_depth * t_factor 

710 qml.ThermalRelaxationError(1.0, t1, t2, tg, q) 

711 

712 def _get_circuit_depth(self, inputs: Optional[np.ndarray] = None) -> int: 

713 """ 

714 Obtain circuit depth for the model 

715 

716 Args: 

717 inputs (Optional[np.ndarray]): The inputs, with which to call the 

718 circuit. Defaults to None. 

719 

720 Returns: 

721 int: Circuit depth (longest path of gates in circuit.) 

722 """ 

723 inputs = self._inputs_validation(inputs) 

724 spec_model = deepcopy(self) 

725 spec_model.noise_params = None # remove noise 

726 specs = qml.specs(spec_model.circuit)(self.params, inputs) 

727 

728 return specs["resources"].depth 

729 

730 def draw(self, inputs=None, figure="text", *args, **kwargs): 

731 """ 

732 Draws the quantum circuit using the specified visualization method. 

733 

734 Args: 

735 inputs (Optional[np.ndarray]): Input vector for the circuit. If None, 

736 the default inputs are used. 

737 figure (str, optional): The type of figure to generate. Must be one of 

738 'text', 'mpl', or 'tikz'. Defaults to 'text'. 

739 Returns: 

740 Either a string, matplotlib figure or TikzFigure object (similar to string) 

741 depending on the chosen visualization. 

742 *args: 

743 Additional arguments to be passed to the visualization method. 

744 **kwargs: 

745 Additional keyword arguments to be passed to the visualization method. 

746 

747 Raises: 

748 AssertionError: If the 'figure' argument is not one of the accepted values. 

749 """ 

750 

751 if not isinstance(self.circuit, qml.QNode): 

752 # TODO: throws strange argument error if not catched 

753 return "" 

754 

755 assert figure in [ 

756 "text", 

757 "mpl", 

758 "tikz", 

759 ], f"Invalid figure: {figure}. Must be 'text', 'mpl' or 'tikz'." 

760 

761 inputs = self._inputs_validation(inputs) 

762 

763 if figure == "mpl": 

764 result = qml.draw_mpl(self.circuit)( 

765 params=self.params, 

766 inputs=inputs, 

767 enc_params=self.enc_params, 

768 *args, 

769 **kwargs, 

770 ) 

771 elif figure == "tikz": 

772 result = QuanTikz.build( 

773 self.circuit, 

774 params=self.params, 

775 inputs=inputs, 

776 enc_params=self.enc_params, 

777 *args, 

778 **kwargs, 

779 ) 

780 else: 

781 result = qml.draw(self.circuit)( 

782 params=self.params, inputs=inputs, enc_params=self.enc_params 

783 ) 

784 return result 

785 

786 def __repr__(self) -> str: 

787 return self.draw(figure="text") 

788 

789 def __str__(self) -> str: 

790 return self.draw(figure="text") 

791 

792 def _params_validation(self, params) -> np.ndarray: 

793 """ 

794 Sets the parameters when calling the quantum circuit 

795 

796 Args: 

797 params (np.ndarray): The parameters used for the call 

798 """ 

799 if params is None: 

800 params = self.params 

801 else: 

802 if numpy_boxes.ArrayBox == type(params): 

803 self.params = params._value 

804 else: 

805 self.params = params 

806 

807 # Get rid of extra dimension 

808 if len(params.shape) == 3 and params.shape[2] == 1: 

809 params = params[:, :, 0] 

810 

811 return params 

812 

813 def _enc_params_validation(self, enc_params) -> np.ndarray: 

814 """ 

815 Sets the encoding parameters when calling the quantum circuit 

816 

817 Args: 

818 enc_params (np.ndarray): The encoding parameters used for the call 

819 """ 

820 if enc_params is None: 

821 enc_params = self.enc_params 

822 else: 

823 if isinstance(enc_params, numpy_boxes.ArrayBox): 

824 if self.trainable_frequencies: 

825 self.enc_params = enc_params._value 

826 else: 

827 self.enc_params = np.array( 

828 enc_params._value, requires_grad=self.trainable_frequencies 

829 ) 

830 else: 

831 if self.trainable_frequencies: 

832 self.enc_params = enc_params 

833 else: 

834 self.enc_params = np.array( 

835 enc_params, requires_grad=self.trainable_frequencies 

836 ) 

837 

838 if len(enc_params.shape) == 1 and self.n_input_feat == 1: 

839 enc_params = enc_params.reshape(-1, 1) 

840 elif len(enc_params.shape) == 1 and self.n_input_feat > 1: 

841 raise ValueError( 

842 f"Input dimension {self.n_input_feat} >1 but \ 

843 `enc_params` has shape {enc_params.shape}" 

844 ) 

845 

846 return enc_params 

847 

848 def _inputs_validation( 

849 self, inputs: Union[None, List, float, int, np.ndarray] 

850 ) -> np.ndarray: 

851 """ 

852 Validate the inputs to be a 2D numpy array of shape (batch_size, n_inputs). 

853 

854 Args: 

855 inputs (Union[None, List, float, int, np.ndarray]): The input to validate. 

856 

857 Returns: 

858 np.ndarray: The validated input. 

859 """ 

860 if inputs is None: 

861 # initialize to zero 

862 inputs = np.array([[0] * self.n_input_feat]) 

863 elif isinstance(inputs, List): 

864 inputs = np.stack(inputs) 

865 elif isinstance(inputs, float) or isinstance(inputs, int): 

866 inputs = np.array([inputs]) 

867 

868 if len(inputs.shape) <= 1: 

869 if self.n_input_feat == 1: 

870 # add a batch dimension 

871 inputs = inputs.reshape(-1, 1) 

872 else: 

873 if inputs.shape[0] == self.n_input_feat: 

874 inputs = inputs.reshape(1, -1) 

875 else: 

876 inputs = inputs.reshape(-1, 1) 

877 inputs = inputs.repeat(self.n_input_feat, axis=1) 

878 warnings.warn( 

879 f"Expected {self.n_input_feat} inputs, but {inputs.shape[0]} " 

880 "was provided, replicating input for all input features.", 

881 UserWarning, 

882 ) 

883 else: 

884 if inputs.shape[1] != self.n_input_feat: 

885 raise ValueError( 

886 f"Wrong number of inputs provided. Expected {self.n_input_feat} " 

887 f"inputs, but input has shape {inputs.shape}." 

888 ) 

889 

890 return inputs 

891 

892 @staticmethod 

893 def _parallel_f( 

894 procnum, 

895 result, 

896 f, 

897 batch_size, 

898 params, 

899 inputs, 

900 batch_shape, 

901 enc_params, 

902 ): 

903 """ 

904 Helper function for parallelizing a function f over parameters. 

905 Sices the batch dimension based on the procnum and batch size. 

906 

907 Args: 

908 procnum: The process number. 

909 result: The result array. 

910 f: The function to be parallelized. 

911 batch_size: The batch size. 

912 params: The parameters array. 

913 inputs: The inputs array. 

914 enc_params: The encoding parameters array. 

915 """ 

916 min_idx = max(procnum * batch_size, 0) 

917 

918 if batch_shape[0] > 1: 

919 max_idx = min((procnum + 1) * batch_size, inputs.shape[0]) 

920 inputs = inputs[min_idx:max_idx] 

921 if batch_shape[1] > 1: 

922 max_idx = min((procnum + 1) * batch_size, params.shape[2]) 

923 params = params[:, :, min_idx:max_idx] 

924 

925 result[procnum] = f(params=params, inputs=inputs, enc_params=enc_params) 

926 

927 def _mp_executor(self, f, params, inputs, enc_params): 

928 """ 

929 Execute a function f in parallel over parameters. 

930 

931 Args: 

932 f: A function that takes two arguments, params and inputs, 

933 and returns a numpy array. 

934 params: A 3D numpy array of parameters where the first dimension is 

935 the layer index, the second dimension is the parameter index in 

936 the layer, and the third dimension is the sample index. 

937 inputs: A 2D numpy array of inputs where the first dimension is 

938 the sample index and the second dimension is the input feature index. 

939 enc_params: A 1D numpy array of encoding parameters where the dimension is 

940 the qubit index. 

941 

942 Returns: 

943 A numpy array of the output of f applied to each batch of 

944 samples in params, enc_params, and inputs. 

945 """ 

946 n_processes = 1 

947 # batches available? 

948 combined_batch_size = math.prod(self.batch_shape) 

949 if ( 

950 combined_batch_size > 1 

951 and self.mp_threshold > 0 

952 and combined_batch_size > self.mp_threshold 

953 ): 

954 n_processes = math.ceil(combined_batch_size / self.mp_threshold) 

955 # check if single process 

956 if n_processes == 1: 

957 if self.mp_threshold > 0: 

958 warnings.warn( 

959 f"Multiprocessing threshold {self.mp_threshold}>0, but using \ 

960 single process, because {combined_batch_size} samples per batch.", 

961 ) 

962 result = f(params=params, inputs=inputs, enc_params=enc_params) 

963 else: 

964 log.info(f"Using {n_processes} processes") 

965 mpp = MultiprocessingPool( 

966 target=Model._parallel_f, 

967 n_processes=n_processes, 

968 cpu_scaler=self.cpu_scaler, 

969 batch_size=self.mp_threshold, 

970 f=f, 

971 params=params, 

972 enc_params=enc_params, 

973 inputs=inputs, 

974 batch_shape=self.batch_shape, 

975 ) 

976 return_dict = mpp.spawn() 

977 

978 # TODO: the following code could use some optimization 

979 result = [None] * len(return_dict) 

980 for k, v in return_dict.items(): 

981 result[k] = v 

982 

983 result = np.concat(result, axis=1 if self.execution_type == "expval" else 0) 

984 return result 

985 

986 def _assimilate_batch(self, inputs, params): 

987 batch_shape = ( 

988 inputs.shape[0], 

989 params.shape[2] if len(params.shape) == 3 else 1, 

990 ) 

991 

992 if ( 

993 batch_shape[1] != 1 

994 and batch_shape[0] != batch_shape[1] 

995 and batch_shape[0] > 1 

996 ): 

997 # the following code does some dirty reshaping 

998 # TODO: optimize but be aware of the rabbit hole 

999 # key is to get the right "order" in which we repeat 

1000 

1001 # [BI,D] -> [BPxBI,D] 

1002 inputs = np.repeat(inputs, batch_shape[1], axis=0) 

1003 

1004 # this is a tricky one, essentially we want to get 

1005 # [L,Q,BP] -> [L,Q,BI,BP] -> [L,Q,BPxBI] 

1006 params = np.repeat( 

1007 params[:, :, np.newaxis, :], batch_shape[0], axis=2 

1008 ).reshape([*params.shape[:-1], np.prod(batch_shape)]) 

1009 

1010 return inputs, params, batch_shape 

1011 

1012 def _requires_density(self): 

1013 """ 

1014 Checks if the current model requires density matrix simulation or not 

1015 based on the noise_params variable and the execution type 

1016 

1017 Returns: 

1018 bool: True if model requires density simulation 

1019 """ 

1020 if self.execution_type == "density": 

1021 return True 

1022 

1023 if self.noise_params is not None: 

1024 coherent_noise = ["GateError"] 

1025 for k, v in self.noise_params.items(): 

1026 if k in coherent_noise: 

1027 continue 

1028 if v is not None and v > 0: 

1029 return True 

1030 return False 

1031 

1032 def __call__( 

1033 self, 

1034 params: Optional[np.ndarray] = None, 

1035 inputs: Optional[np.ndarray] = None, 

1036 enc_params: Optional[np.ndarray] = None, 

1037 noise_params: Optional[Dict[str, Union[float, Dict[str, float]]]] = None, 

1038 cache: Optional[bool] = False, 

1039 execution_type: Optional[str] = None, 

1040 force_mean: bool = False, 

1041 ) -> np.ndarray: 

1042 """ 

1043 Perform a forward pass of the quantum circuit. 

1044 

1045 Args: 

1046 params (Optional[np.ndarray]): Weight vector of shape 

1047 [n_layers, n_qubits*n_params_per_layer]. 

1048 If None, model internal parameters are used. 

1049 inputs (Optional[np.ndarray]): Input vector of shape [1]. 

1050 If None, zeros are used. 

1051 enc_params (Optional[np.ndarray]): Weight vector of shape 

1052 [n_qubits, n_input_features]. If None, model internal encoding 

1053 parameters are used. 

1054 noise_params (Optional[Dict[str, float]], optional): The noise parameters. 

1055 Defaults to None which results in the last 

1056 set noise parameters being used. 

1057 cache (Optional[bool], optional): Whether to cache the results. 

1058 Defaults to False. 

1059 execution_type (str, optional): The type of execution. 

1060 Must be one of 'expval', 'density', or 'probs'. 

1061 Defaults to None which results in the last set execution type 

1062 being used. 

1063 force_mean (bool, optional): Whether to average 

1064 when performing n-local measurements. 

1065 Defaults to False. 

1066 

1067 Returns: 

1068 np.ndarray: The output of the quantum circuit. 

1069 The shape depends on the execution_type. 

1070 - If execution_type is 'expval', returns an ndarray of shape 

1071 (1,) if output_qubit is -1, else (len(output_qubit),). 

1072 - If execution_type is 'density', returns an ndarray 

1073 of shape (2**n_qubits, 2**n_qubits). 

1074 - If execution_type is 'probs', returns an ndarray 

1075 of shape (2**n_qubits,) if output_qubit is -1, else 

1076 (2**len(output_qubit),). 

1077 """ 

1078 # Call forward method which handles the actual caching etc. 

1079 return self._forward( 

1080 params=params, 

1081 inputs=inputs, 

1082 enc_params=enc_params, 

1083 noise_params=noise_params, 

1084 cache=cache, 

1085 execution_type=execution_type, 

1086 force_mean=force_mean, 

1087 ) 

1088 

1089 def _forward( 

1090 self, 

1091 params: Optional[np.ndarray] = None, 

1092 inputs: Optional[np.ndarray] = None, 

1093 enc_params: Optional[np.ndarray] = None, 

1094 noise_params: Optional[Dict[str, Union[float, Dict[str, float]]]] = None, 

1095 cache: Optional[bool] = False, 

1096 execution_type: Optional[str] = None, 

1097 force_mean: bool = False, 

1098 ) -> np.ndarray: 

1099 """ 

1100 Perform a forward pass of the quantum circuit. 

1101 

1102 Args: 

1103 params (Optional[np.ndarray]): Weight vector of shape 

1104 [n_layers, n_qubits*n_params_per_layer]. 

1105 If None, model internal parameters are used. 

1106 inputs (Optional[np.ndarray]): Input vector of shape [1]. 

1107 If None, zeros are used. 

1108 enc_params (Optional[np.ndarray]): Weight vector of shape 

1109 [n_qubits, n_input_features]. If None, model internal encoding 

1110 parameters are used. 

1111 noise_params (Optional[Dict[str, float]], optional): The noise parameters. 

1112 Defaults to None which results in the last 

1113 set noise parameters being used. 

1114 cache (Optional[bool], optional): Whether to cache the results. 

1115 Defaults to False. 

1116 execution_type (str, optional): The type of execution. 

1117 Must be one of 'expval', 'density', or 'probs'. 

1118 Defaults to None which results in the last set execution type 

1119 being used. 

1120 force_mean (bool, optional): Whether to average 

1121 when performing n-local measurements. 

1122 Defaults to False. 

1123 

1124 Returns: 

1125 np.ndarray: The output of the quantum circuit. 

1126 The shape depends on the execution_type. 

1127 - If execution_type is 'expval', returns an ndarray of shape 

1128 (1,) if output_qubit is -1, else (len(output_qubit),). 

1129 - If execution_type is 'density', returns an ndarray 

1130 of shape (2**n_qubits, 2**n_qubits). 

1131 - If execution_type is 'probs', returns an ndarray 

1132 of shape (2**n_qubits,) if output_qubit is -1, else 

1133 (2**len(output_qubit),). 

1134 

1135 Raises: 

1136 NotImplementedError: If the number of shots is not None or if the 

1137 expectation value is True. 

1138 """ 

1139 # set the parameters as object attributes 

1140 if noise_params is not None: 

1141 self.noise_params = noise_params 

1142 if execution_type is not None: 

1143 self.execution_type = execution_type 

1144 

1145 params = self._params_validation(params) 

1146 inputs = self._inputs_validation(inputs) 

1147 enc_params = self._enc_params_validation(enc_params) 

1148 inputs, params, self.batch_shape = self._assimilate_batch(inputs, params) 

1149 # the qasm representation contains the bound parameters, 

1150 # thus it is ok to hash that 

1151 hs = hashlib.md5( 

1152 repr( 

1153 { 

1154 "n_qubits": self.n_qubits, 

1155 "n_layers": self.n_layers, 

1156 "pqc": self.pqc.__class__.__name__, 

1157 "dru": self.data_reupload, 

1158 "params": self.params, # use safe-params 

1159 "enc_params": self.enc_params, 

1160 "noise_params": self.noise_params, 

1161 "execution_type": self.execution_type, 

1162 "inputs": inputs, 

1163 "output_qubit": self.output_qubit, 

1164 } 

1165 ).encode("utf-8") 

1166 ).hexdigest() 

1167 

1168 result: Optional[np.ndarray] = None 

1169 if cache: 

1170 name: str = f"pqc_{hs}.npy" 

1171 

1172 cache_folder: str = ".cache" 

1173 if not os.path.exists(cache_folder): 

1174 os.mkdir(cache_folder) 

1175 

1176 file_path: str = os.path.join(cache_folder, name) 

1177 

1178 if os.path.isfile(file_path): 

1179 result = np.load(file_path) 

1180 

1181 if result is None: 

1182 # if density matrix requested or noise params used 

1183 if self._requires_density(): 

1184 result = self._mp_executor( 

1185 f=self.circuit_mixed, 

1186 params=params, # use arraybox params 

1187 inputs=inputs, 

1188 enc_params=enc_params, 

1189 ) 

1190 else: 

1191 if not isinstance(self.circuit, qml.QNode): 

1192 result = self.circuit( 

1193 inputs=inputs, 

1194 ) 

1195 else: 

1196 result = self._mp_executor( 

1197 f=self.circuit, 

1198 params=params, # use arraybox params 

1199 inputs=inputs, 

1200 enc_params=enc_params, 

1201 ) 

1202 

1203 if isinstance(result, list): 

1204 result = np.stack(result) 

1205 

1206 if self.execution_type == "expval" and force_mean and self.output_qubit == -1: 

1207 # exception for torch layer because it swaps batch and output dimension 

1208 if not isinstance(self.circuit, qml.QNode): 

1209 result = result.mean(axis=-1) 

1210 else: 

1211 result = result.mean(axis=0) 

1212 elif self.execution_type == "probs" and force_mean and self.output_qubit == -1: 

1213 # exception for torch layer because it swaps batch and output dimension 

1214 if not isinstance(self.circuit, qml.QNode): 

1215 result = result[..., -1].sum(axis=-1) 

1216 else: 

1217 result = result[1:, ...].sum(axis=0) 

1218 

1219 if self.batch_shape[0] > 1 and self.batch_shape[1] > 1: 

1220 result = result.reshape(-1, *self.batch_shape) 

1221 

1222 result = result.squeeze() 

1223 

1224 if cache: 

1225 np.save(file_path, result) 

1226 

1227 return result