Skip to content

References

Ansaetze#

from qml_essentials.ansaetze import Ansaetze
Source code in qml_essentials/ansaetze.py
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
class Ansaetze:

    def get_available():
        return [
            Ansaetze.No_Ansatz,
            Ansaetze.Circuit_1,
            Ansaetze.Circuit_2,
            Ansaetze.Circuit_3,
            Ansaetze.Circuit_4,
            Ansaetze.Circuit_6,
            Ansaetze.Circuit_9,
            Ansaetze.Circuit_10,
            Ansaetze.Circuit_15,
            Ansaetze.Circuit_16,
            Ansaetze.Circuit_17,
            Ansaetze.Circuit_18,
            Ansaetze.Circuit_19,
            Ansaetze.No_Entangling,
            Ansaetze.Strongly_Entangling,
            Ansaetze.Hardware_Efficient,
            Ansaetze.GHZ,
        ]

    class No_Ansatz(Circuit):
        @staticmethod
        def n_params_per_layer(n_qubits: int) -> int:
            return 0

        @staticmethod
        def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
            return None

        @staticmethod
        def build(w: np.ndarray, n_qubits: int, noise_params=None):
            pass

    class GHZ(Circuit):
        @staticmethod
        def n_params_per_layer(n_qubits: int) -> int:
            return 0

        @staticmethod
        def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
            return None

        @staticmethod
        def build(w: np.ndarray, n_qubits: int, noise_params=None):
            Gates.H(0, noise_params=noise_params)

            for q in range(n_qubits - 1):
                Gates.CX([q, q + 1], noise_params=noise_params)

    class Hardware_Efficient(Circuit):
        @staticmethod
        def n_params_per_layer(n_qubits: int) -> int:
            """
            Returns the number of parameters per layer for the
            Hardware Efficient Ansatz.

            The number of parameters is 3 times the number of qubits when there
            is more than one qubit, as each qubit contributes 3 parameters.
            If the number of qubits is less than 2, a warning is logged since
            no entanglement is possible, and a fixed number of 2 parameters is used.

            Parameters
            ----------
            n_qubits : int
                Number of qubits in the circuit

            Returns
            -------
            int
                Number of parameters required for one layer of the circuit
            """
            if n_qubits < 2:
                log.warning("Number of Qubits < 2, no entanglement available")
            return n_qubits * 3

        @staticmethod
        def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
            """
            No controlled rotation gates available. Always None.

            Parameters
            ----------
            n_qubits : int
                Number of qubits in the circuit

            Returns
            -------
            Optional[np.ndarray]
                List of all controlled indices, or None if the circuit does not
                contain controlled rotation gates.
            """
            return None

        @staticmethod
        def build(w: np.ndarray, n_qubits: int, noise_params=None):
            """
            Creates a Hardware-Efficient ansatz, as proposed in
            https://arxiv.org/pdf/2309.03279

            Parameters
            ----------
            w : np.ndarray
                Weight vector of size n_qubits*3
            n_qubits : int
                Number of qubits
            noise_params : Optional[Dict[str, float]], optional
                Dictionary of noise parameters to apply to the gates
            """
            w_idx = 0
            for q in range(n_qubits):
                Gates.RY(w[w_idx], wires=q, noise_params=noise_params)
                w_idx += 1
                Gates.RZ(w[w_idx], wires=q, noise_params=noise_params)
                w_idx += 1
                Gates.RY(w[w_idx], wires=q, noise_params=noise_params)
                w_idx += 1

            if n_qubits > 1:
                for q in range(n_qubits // 2):
                    Gates.CX(wires=[(2 * q), (2 * q + 1)], noise_params=noise_params)
                for q in range((n_qubits - 1) // 2):
                    Gates.CX(
                        wires=[(2 * q + 1), (2 * q + 2)], noise_params=noise_params
                    )
                if n_qubits > 2:
                    Gates.CX(wires=[(n_qubits - 1), 0], noise_params=noise_params)

    class Circuit_19(Circuit):
        @staticmethod
        def n_params_per_layer(n_qubits: int) -> int:
            """
            Returns the number of parameters per layer for Circuit_19.

            The number of parameters is 3 times the number of qubits when there
            is more than one qubit, as each qubit contributes 3 parameters.
            If the number of qubits is less than 2, a warning is logged since
            no entanglement is possible, and a fixed number of 2 parameters is used.

            Parameters
            ----------
            n_qubits : int
                Number of qubits in the circuit

            Returns
            -------
            int
                Number of parameters required for one layer of the circuit
            """

            if n_qubits > 1:
                return n_qubits * 3
            else:
                log.warning("Number of Qubits < 2, no entanglement available")
                return 2

        @staticmethod
        def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
            """
            Returns the indices for the controlled rotation gates for one layer.
            Indices should slice the list of all parameters for one layer as follows:
            [indices[0]:indices[1]:indices[2]]

            Parameters
            ----------
            n_qubits : int
                Number of qubits in the circuit

            Returns
            -------
            Optional[np.ndarray]
                List of all controlled indices, or None if the circuit does not
                contain controlled rotation gates.
            """
            if n_qubits > 1:
                return [-n_qubits, None, None]
            else:
                return None

        @staticmethod
        def build(w: np.ndarray, n_qubits: int, noise_params=None):
            """
            Creates a Circuit19 ansatz.

            Length of flattened vector must be n_qubits*3
            because for >1 qubits there are three gates

            Parameters
            ----------
            w : np.ndarray
                Weight vector of size n_qubits*3
            n_qubits : int
                Number of qubits
            noise_params : Optional[Dict[str, float]], optional
                Dictionary of noise parameters to apply to the gates
            """
            w_idx = 0
            for q in range(n_qubits):
                Gates.RX(w[w_idx], wires=q, noise_params=noise_params)
                w_idx += 1
                Gates.RZ(w[w_idx], wires=q, noise_params=noise_params)
                w_idx += 1

            if n_qubits > 1:
                for q in range(n_qubits):
                    Gates.CRX(
                        w[w_idx],
                        wires=[n_qubits - q - 1, (n_qubits - q) % n_qubits],
                        noise_params=noise_params,
                    )
                    w_idx += 1

    class Circuit_18(Circuit):
        @staticmethod
        def n_params_per_layer(n_qubits: int) -> int:
            """
            Returns the number of parameters per layer for Circuit_18.

            The number of parameters is 3 times the number of qubits when there
            is more than one qubit, as each qubit contributes 3 parameters.
            If the number of qubits is less than 2, a warning is logged since
            no entanglement is possible, and a fixed number of 2 parameters is used.

            Parameters
            ----------
            n_qubits : int
                Number of qubits in the circuit

            Returns
            -------
            int
                Number of parameters required for one layer of the circuit
            """
            if n_qubits > 1:
                return n_qubits * 3
            else:
                log.warning("Number of Qubits < 2, no entanglement available")
                return 2

        @staticmethod
        def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
            """
            Returns the indices for the controlled rotation gates for one layer.
            Indices should slice the list of all parameters for one layer as follows:
            [indices[0]:indices[1]:indices[2]]

            Parameters
            ----------
            n_qubits : int
                Number of qubits in the circuit

            Returns
            -------
            Optional[np.ndarray]
                List of all controlled indices, or None if the circuit does not
                contain controlled rotation gates.
            """
            if n_qubits > 1:
                return [-n_qubits, None, None]
            else:
                return None

        @staticmethod
        def build(w: np.ndarray, n_qubits: int, noise_params=None):
            """
            Creates a Circuit18 ansatz.

            Length of flattened vector must be n_qubits*3

            Parameters
            ----------
            w : np.ndarray
                Weight vector of size n_qubits*3
            n_qubits : int
                Number of qubits
            noise_params : Optional[Dict[str, float]], optional
                Dictionary of noise parameters to apply to the gates
            """
            w_idx = 0
            for q in range(n_qubits):
                Gates.RX(w[w_idx], wires=q, noise_params=noise_params)
                w_idx += 1
                Gates.RZ(w[w_idx], wires=q, noise_params=noise_params)
                w_idx += 1

            if n_qubits > 1:
                for q in range(n_qubits):
                    Gates.CRZ(
                        w[w_idx],
                        wires=[n_qubits - q - 1, (n_qubits - q) % n_qubits],
                        noise_params=noise_params,
                    )
                    w_idx += 1

    class Circuit_15(Circuit):
        @staticmethod
        def n_params_per_layer(n_qubits: int) -> int:
            """
            Returns the number of parameters per layer for Circuit_15.

            The number of parameters is 2 times the number of qubits.
            A warning is logged if the number of qubits is less than 2.

            Parameters
            ----------
            n_qubits : int
                Number of qubits in the circuit

            Returns
            -------
            int
                Number of parameters required for one layer of the circuit
            """
            if n_qubits > 1:
                return n_qubits * 2
            else:
                log.warning("Number of Qubits < 2, no entanglement available")
                return 2

        @staticmethod
        def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
            """
            No controlled rotation gates available. Always None.

            Parameters
            ----------
            n_qubits : int
                Number of qubits in the circuit

            Returns
            -------
            Optional[np.ndarray]
                List of all controlled indices, or None if the circuit does not
                contain controlled rotation gates.
            """
            return None

        @staticmethod
        def build(w: np.ndarray, n_qubits: int, noise_params=None):
            """
            Creates a Circuit15 ansatz.

            Length of flattened vector must be n_qubits*2
            because for >1 qubits there are three gates

            Parameters
            ----------
            w : np.ndarray
                Weight vector of size n_qubits*2
            n_qubits : int
                Number of qubits
            noise_params : Optional[Dict[str, float]], optional
                Dictionary of noise parameters to apply to the gates
            """
            w_idx = 0
            for q in range(n_qubits):
                Gates.RY(w[w_idx], wires=q, noise_params=noise_params)
                w_idx += 1

            if n_qubits > 1:
                for q in range(n_qubits):
                    Gates.CX(
                        wires=[n_qubits - q - 1, (n_qubits - q) % n_qubits],
                        noise_params=noise_params,
                    )

            for q in range(n_qubits):
                Gates.RY(w[w_idx], wires=q, noise_params=noise_params)
                w_idx += 1

            if n_qubits > 1:
                for q in range(n_qubits):
                    Gates.CX(
                        wires=[(q - 1) % n_qubits, (q - 2) % n_qubits],
                        noise_params=noise_params,
                    )

    class Circuit_9(Circuit):
        @staticmethod
        def n_params_per_layer(n_qubits: int) -> int:
            """
            Returns the number of parameters per layer for Circuit_9.

            The number of parameters is equal to the number of qubits.

            Parameters
            ----------
            n_qubits : int
                Number of qubits in the circuit

            Returns
            -------
            int
                Number of parameters required for one layer of the circuit
            """
            return n_qubits

        @staticmethod
        def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
            """
            No controlled rotation gates available. Always None.

            Parameters
            ----------
            n_qubits : int
                Number of qubits in the circuit

            Returns
            -------
            Optional[np.ndarray]
                List of all controlled indices, or None if the circuit does not
                contain controlled rotation gates.
            """
            return None

        @staticmethod
        def build(w: np.ndarray, n_qubits: int, noise_params=None):
            """
            Creates a Circuit9 ansatz.

            Length of flattened vector must be n_qubits

            Parameters
            ----------
            w : np.ndarray
                Weight vector of size n_qubits
            n_qubits : int
                Number of qubits
            noise_params : Optional[Dict[str, float]], optional
                Dictionary of noise parameters to apply to the gates
            """
            w_idx = 0
            for q in range(n_qubits):
                Gates.H(wires=q, noise_params=noise_params)

            if n_qubits > 1:
                for q in range(n_qubits - 1):
                    Gates.CZ(
                        wires=[n_qubits - q - 2, n_qubits - q - 1],
                        noise_params=noise_params,
                    )

            for q in range(n_qubits):
                Gates.RX(w[w_idx], wires=q, noise_params=noise_params)
                w_idx += 1

    class Circuit_6(Circuit):
        @staticmethod
        def n_params_per_layer(n_qubits: int) -> int:
            """
            Returns the number of parameters per layer for Circuit_6.

            The total number of parameters is n_qubits*3+n_qubits**2, which is
            the number of rotations n_qubits*3 plus the number of entangling gates
            n_qubits**2.

            If n_qubits is 1, the number of parameters is 4, and a warning is logged
            since no entanglement is possible.

            Parameters
            ----------
            n_qubits : int
                Number of qubits

            Returns
            -------
            int
                Number of parameters per layer
            """
            if n_qubits > 1:
                return n_qubits * 3 + n_qubits**2
            else:
                log.warning("Number of Qubits < 2, no entanglement available")
                return 4

        @staticmethod
        def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
            """
            Returns the indices for the controlled rotation gates for one layer.
            Indices should slice the list of all parameters for one layer as follows:
            [indices[0]:indices[1]:indices[2]]

            Parameters
            ----------
            n_qubits : int
                Number of qubits in the circuit

            Returns
            -------
            Optional[np.ndarray]
                List of all controlled indices, or None if the circuit does not
                contain controlled rotation gates.
            """
            if n_qubits > 1:
                return [-n_qubits, None, None]
            else:
                return None

        @staticmethod
        def build(w: np.ndarray, n_qubits: int, noise_params=None):
            """
            Creates a Circuit6 ansatz.

            Length of flattened vector must be
                n_qubits*4+n_qubits*(n_qubits-1) =
                n_qubits*3+n_qubits**2

            Parameters
            ----------
            w : np.ndarray
                Weight vector of size
                    n_layers*(n_qubits*3+n_qubits**2)
            n_qubits : int
                Number of qubits
            noise_params : Optional[Dict[str, float]], optional
                Dictionary of noise parameters to apply to the gates
            """
            w_idx = 0
            for q in range(n_qubits):
                Gates.RX(w[w_idx], wires=q, noise_params=noise_params)
                w_idx += 1
                Gates.RZ(w[w_idx], wires=q, noise_params=noise_params)
                w_idx += 1

            if n_qubits > 1:
                for ql in range(n_qubits):
                    for q in range(n_qubits):
                        if q == ql:
                            continue
                        Gates.CRX(
                            w[w_idx],
                            wires=[n_qubits - ql - 1, (n_qubits - q - 1) % n_qubits],
                            noise_params=noise_params,
                        )
                        w_idx += 1

            for q in range(n_qubits):
                Gates.RX(w[w_idx], wires=q, noise_params=noise_params)
                w_idx += 1
                Gates.RZ(w[w_idx], wires=q, noise_params=noise_params)
                w_idx += 1

    class Circuit_1(Circuit):
        @staticmethod
        def n_params_per_layer(n_qubits: int) -> int:
            """
            Returns the number of parameters per layer for Circuit_1.

            The total number of parameters is determined by the number of qubits, with
            each qubit contributing 2 parameters.

            Parameters
            ----------
            n_qubits : int
                Number of qubits in the circuit

            Returns
            -------
            int
                Number of parameters per layer
            """
            return n_qubits * 2

        @staticmethod
        def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
            """
            No controlled rotation gates available. Always None.

            Parameters
            ----------
            n_qubits : int
                Number of qubits in the circuit

            Returns
            -------
            Optional[np.ndarray]
                List of all controlled indices, or None if the circuit does not
                contain controlled rotation gates.
            """
            return None

        @staticmethod
        def build(w: np.ndarray, n_qubits: int, noise_params=None):
            """
            Creates a Circuit1 ansatz.

            Length of flattened vector must be n_qubits*2

            Parameters
            ----------
            w : np.ndarray
                Weight vector of size n_qubits*2
            n_qubits : int
                Number of qubits
            noise_params : Optional[Dict[str, float]], optional
                Dictionary of noise parameters to apply to the gates
            """
            w_idx = 0
            for q in range(n_qubits):
                Gates.RX(w[w_idx], wires=q, noise_params=noise_params)
                w_idx += 1
                Gates.RZ(w[w_idx], wires=q, noise_params=noise_params)
                w_idx += 1

    class Circuit_2(Circuit):
        @staticmethod
        def n_params_per_layer(n_qubits: int) -> int:
            """
            Returns the number of parameters per layer for Circuit_2.

            The total number of parameters is determined by the number of qubits, with
            each qubit contributing 2 parameters.

            Parameters
            ----------
            n_qubits : int
                Number of qubits in the circuit

            Returns
            -------
            int
                Number of parameters per layer
            """
            return n_qubits * 2

        @staticmethod
        def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
            """
            No controlled rotation gates available. Always None.

            Parameters
            ----------
            n_qubits : int
                Number of qubits in the circuit

            Returns
            -------
            Optional[np.ndarray]
                List of all controlled indices, or None if the circuit does not
                contain controlled rotation gates.
            """
            return None

        @staticmethod
        def build(w: np.ndarray, n_qubits: int, noise_params=None):
            """
            Creates a Circuit2 ansatz.

            Length of flattened vector must be n_qubits*2

            Parameters
            ----------
            w : np.ndarray
                Weight vector of size n_qubits*2
            n_qubits : int
                Number of qubits
            noise_params : Optional[Dict[str, float]], optional
                Dictionary of noise parameters to apply to the gates
            """
            w_idx = 0
            for q in range(n_qubits):
                Gates.RX(w[w_idx], wires=q, noise_params=noise_params)
                w_idx += 1
                Gates.RZ(w[w_idx], wires=q, noise_params=noise_params)
                w_idx += 1

            if n_qubits > 1:
                for q in range(n_qubits - 1):
                    Gates.CX(
                        wires=[n_qubits - q - 1, n_qubits - q - 2],
                        noise_params=noise_params,
                    )

    class Circuit_3(Circuit):
        @staticmethod
        def n_params_per_layer(n_qubits: int) -> int:
            """
            Calculates the number of parameters per layer for Circuit3.

            The number of parameters per layer is given by the number of qubits, with
            each qubit contributing 3 parameters. The last qubit only contributes 2
            parameters because it is the target qubit for the controlled gates.

            Parameters
            ----------
            n_qubits : int
                Number of qubits in the circuit

            Returns
            -------
            int
                Number of parameters per layer
            """
            return n_qubits * 3 - 1

        @staticmethod
        def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
            """
            No controlled rotation gates available. Always None.

            Parameters
            ----------
            n_qubits : int
                Number of qubits in the circuit

            Returns
            -------
            Optional[np.ndarray]
                List of all controlled indices, or None if the circuit does not
                contain controlled rotation gates.
            """
            return None

        @staticmethod
        def build(w: np.ndarray, n_qubits: int, noise_params=None):
            """
            Creates a Circuit3 ansatz.

            Length of flattened vector must be n_qubits*3-1

            Parameters
            ----------
            w : np.ndarray
                Weight vector of size n_qubits*3-1
            n_qubits : int
                Number of qubits
            noise_params : Optional[Dict[str, float]], optional
                Dictionary of noise parameters to apply to the gates
            """
            w_idx = 0
            for q in range(n_qubits):
                Gates.RX(w[w_idx], wires=q, noise_params=noise_params)
                w_idx += 1
                Gates.RZ(w[w_idx], wires=q, noise_params=noise_params)
                w_idx += 1

            if n_qubits > 1:
                for q in range(n_qubits - 1):
                    Gates.CRZ(
                        w[w_idx],
                        wires=[n_qubits - q - 1, n_qubits - q - 2],
                        noise_params=noise_params,
                    )
                    w_idx += 1

    class Circuit_4(Circuit):
        @staticmethod
        def n_params_per_layer(n_qubits: int) -> int:
            """
            Returns the number of parameters per layer for the Circuit_4 ansatz.

            The number of parameters is calculated as n_qubits*3-1.

            Parameters
            ----------
            n_qubits : int
                Number of qubits in the circuit

            Returns
            -------
            int
                Number of parameters per layer
            """
            return n_qubits * 3 - 1

        @staticmethod
        def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
            """
            No controlled rotation gates available. Always None.

            Parameters
            ----------
            n_qubits : int
                Number of qubits in the circuit

            Returns
            -------
            Optional[np.ndarray]
                List of all controlled indices, or None if the circuit does not
                contain controlled rotation gates.
            """
            return None

        @staticmethod
        def build(w: np.ndarray, n_qubits: int, noise_params=None):
            """
            Creates a Circuit4 ansatz.

            Length of flattened vector must be n_qubits*3-1

            Parameters
            ----------
            w : np.ndarray
                Weight vector of size n_qubits*3-1
            n_qubits : int
                Number of qubits
            noise_params : Optional[Dict[str, float]], optional
                Dictionary of noise parameters to apply to the gates
            """
            w_idx = 0
            for q in range(n_qubits):
                Gates.RX(w[w_idx], wires=q, noise_params=noise_params)
                w_idx += 1
                Gates.RZ(w[w_idx], wires=q, noise_params=noise_params)
                w_idx += 1

            if n_qubits > 1:
                for q in range(n_qubits - 1):
                    Gates.CRX(
                        w[w_idx],
                        wires=[n_qubits - q - 1, n_qubits - q - 2],
                        noise_params=noise_params,
                    )
                    w_idx += 1

    class Circuit_10(Circuit):
        @staticmethod
        def n_params_per_layer(n_qubits: int) -> int:
            """
            Returns the number of parameters per layer for the Circuit_10 ansatz.

            The number of parameters is calculated as n_qubits*2.

            Parameters
            ----------
            n_qubits : int
                Number of qubits in the circuit

            Returns
            -------
            int
                Number of parameters per layer
            """
            return n_qubits * 2  # constant gates not considered yet. has to be fixed

        @staticmethod
        def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
            """
            No controlled rotation gates available. Always None.

            Parameters
            ----------
            n_qubits : int
                Number of qubits in the circuit

            Returns
            -------
            Optional[np.ndarray]
                List of all controlled indices, or None if the circuit does not
                contain controlled rotation gates.
            """
            return None

        @staticmethod
        def build(w: np.ndarray, n_qubits: int, noise_params=None):
            """
            Creates a Circuit10 ansatz.

            Length of flattened vector must be n_qubits*2

            Parameters
            ----------
            w : np.ndarray
                Weight vector of size n_qubits*2
            n_qubits : int
                Number of qubits
            noise_params : Optional[Dict[str, float]], optional
                Dictionary of noise parameters to apply to the gates
            """
            w_idx = 0
            # constant gates, independent of layers. has to be fixed
            for q in range(n_qubits):
                Gates.RY(w[w_idx], wires=q, noise_params=noise_params)
                w_idx += 1

            if n_qubits > 1:
                for q in range(n_qubits - 1):
                    Gates.CZ(
                        wires=[
                            (n_qubits - q - 2) % n_qubits,
                            (n_qubits - q - 1) % n_qubits,
                        ],
                        noise_params=noise_params,
                    )
                if n_qubits > 2:
                    Gates.CZ(wires=[n_qubits - 1, 0], noise_params=noise_params)

            for q in range(n_qubits):
                Gates.RY(w[w_idx], wires=q, noise_params=noise_params)
                w_idx += 1

    class Circuit_16(Circuit):
        @staticmethod
        def n_params_per_layer(n_qubits: int) -> int:
            """
            Returns the number of parameters per layer for the Circuit_16 ansatz.

            The number of parameters is calculated as n_qubits*3-1.

            Parameters
            ----------
            n_qubits : int
                Number of qubits in the circuit

            Returns
            -------
            int
                Number of parameters per layer
            """

            return n_qubits * 3 - 1

        @staticmethod
        def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
            """
            No controlled rotation gates available. Always None.

            Parameters
            ----------
            n_qubits : int
                Number of qubits in the circuit

            Returns
            -------
            Optional[np.ndarray]
                List of all controlled indices, or None if the circuit does not
                contain controlled rotation gates.
            """
            return None

        @staticmethod
        def build(w: np.ndarray, n_qubits: int, noise_params=None):
            """
            Creates a Circuit16 ansatz.

            Length of flattened vector must be n_qubits*3-1

            Parameters
            ----------
            w : np.ndarray
                Weight vector of size n_qubits*3-1
            n_qubits : int
                Number of qubits
            noise_params : Optional[Dict[str, float]], optional
                Dictionary of noise parameters to apply to the gates
            """
            w_idx = 0
            for q in range(n_qubits):
                Gates.RX(w[w_idx], wires=q, noise_params=noise_params)
                w_idx += 1
                Gates.RZ(w[w_idx], wires=q, noise_params=noise_params)
                w_idx += 1

            if n_qubits > 1:
                for q in range(n_qubits // 2):
                    Gates.CRZ(
                        w[w_idx],
                        wires=[(2 * q + 1), (2 * q)],
                        noise_params=noise_params,
                    )
                    w_idx += 1

                for q in range((n_qubits - 1) // 2):
                    Gates.CRZ(
                        w[w_idx],
                        wires=[(2 * q + 2), (2 * q + 1)],
                        noise_params=noise_params,
                    )
                    w_idx += 1

    class Circuit_17(Circuit):
        @staticmethod
        def n_params_per_layer(n_qubits: int) -> int:
            """
            Returns the number of parameters per layer for the Circuit_17 ansatz.

            The number of parameters is calculated as n_qubits*3-1.

            Parameters
            ----------
            n_qubits : int
                Number of qubits in the circuit

            Returns
            -------
            int
                Number of parameters per layer
            """

            return n_qubits * 3 - 1

        @staticmethod
        def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
            """
            No controlled rotation gates available. Always None.

            Parameters
            ----------
            n_qubits : int
                Number of qubits in the circuit

            Returns
            -------
            Optional[np.ndarray]
                List of all controlled indices, or None if the circuit does not
                contain controlled rotation gates.
            """
            return None

        @staticmethod
        def build(w: np.ndarray, n_qubits: int, noise_params=None):
            """
            Creates a Circuit17 ansatz.

            Length of flattened vector must be n_qubits*3-1

            Parameters
            ----------
            w : np.ndarray
                Weight vector of size n_qubits*3-1
            n_qubits : int
                Number of qubits
            noise_params : Optional[Dict[str, float]], optional
                Dictionary of noise parameters to apply to the gates
            """
            w_idx = 0
            for q in range(n_qubits):
                Gates.RX(w[w_idx], wires=q, noise_params=noise_params)
                w_idx += 1
                Gates.RZ(w[w_idx], wires=q, noise_params=noise_params)
                w_idx += 1

            if n_qubits > 1:
                for q in range(n_qubits // 2):
                    Gates.CRX(
                        w[w_idx],
                        wires=[(2 * q + 1), (2 * q)],
                        noise_params=noise_params,
                    )
                    w_idx += 1

                for q in range((n_qubits - 1) // 2):
                    Gates.CRX(
                        w[w_idx],
                        wires=[(2 * q + 2), (2 * q + 1)],
                        noise_params=noise_params,
                    )
                    w_idx += 1

    class Strongly_Entangling(Circuit):
        @staticmethod
        def n_params_per_layer(n_qubits: int) -> int:
            """
            Returns the number of parameters per layer for the
            Strongly Entangling ansatz.

            The number of parameters is calculated as n_qubits*6.

            Parameters
            ----------
            n_qubits : int
                Number of qubits in the circuit

            Returns
            -------
            int
                Number of parameters per layer
            """
            if n_qubits < 2:
                log.warning("Number of Qubits < 2, no entanglement available")
            return n_qubits * 6

        @staticmethod
        def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
            """
            No controlled rotation gates available. Always None.

            Parameters
            ----------
            n_qubits : int
                Number of qubits in the circuit

            Returns
            -------
            Optional[np.ndarray]
                List of all controlled indices, or None if the circuit does not
                contain controlled rotation gates.
            """
            return None

        @staticmethod
        def build(w: np.ndarray, n_qubits: int, noise_params=None) -> None:
            """
            Creates a Strongly Entangling ansatz.

            Length of flattened vector must be n_qubits*6

            Parameters
            ----------
            w : np.ndarray
                Weight vector of size n_qubits*6
            n_qubits : int
                Number of qubits
            noise_params : Optional[Dict[str, float]], optional
                Dictionary of noise parameters to apply to the gates
            """
            w_idx = 0
            for q in range(n_qubits):
                Gates.Rot(
                    w[w_idx],
                    w[w_idx + 1],
                    w[w_idx + 2],
                    wires=q,
                    noise_params=noise_params,
                )
                w_idx += 3

            if n_qubits > 1:
                for q in range(n_qubits):
                    Gates.CX(wires=[q, (q + 1) % n_qubits], noise_params=noise_params)

            for q in range(n_qubits):
                Gates.Rot(
                    w[w_idx],
                    w[w_idx + 1],
                    w[w_idx + 2],
                    wires=q,
                    noise_params=noise_params,
                )
                w_idx += 3

            if n_qubits > 1:
                for q in range(n_qubits):
                    Gates.CX(
                        wires=[q, (q + n_qubits // 2) % n_qubits],
                        noise_params=noise_params,
                    )

    class No_Entangling(Circuit):
        @staticmethod
        def n_params_per_layer(n_qubits: int) -> int:
            """
            Returns the number of parameters per layer for the NoEntangling ansatz.

            The number of parameters is calculated as n_qubits*3.

            Parameters
            ----------
            n_qubits : int
                Number of qubits in the circuit

            Returns
            -------
            int
                Number of parameters per layer
            """
            return n_qubits * 3

        @staticmethod
        def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
            """
            No controlled rotation gates available. Always None.

            Parameters
            ----------
            n_qubits : int
                Number of qubits in the circuit

            Returns
            -------
            Optional[np.ndarray]
                List of all controlled indices, or None if the circuit does not
                contain controlled rotation gates.
            """
            return None

        @staticmethod
        def build(w: np.ndarray, n_qubits: int, noise_params=None):
            """
            Creates a circuit without entangling, but with U3 gates on all qubits

            Length of flattened vector must be n_qubits*3

            Parameters
            ----------
            w : np.ndarray
                Weight vector of size n_qubits*3
            n_qubits : int
                Number of qubits
            noise_params : Optional[Dict[str, float]], optional
                Dictionary of noise parameters to apply to the gates
            """
            w_idx = 0
            for q in range(n_qubits):
                Gates.Rot(
                    w[w_idx],
                    w[w_idx + 1],
                    w[w_idx + 2],
                    wires=q,
                    noise_params=noise_params,
                )
                w_idx += 3

Circuit_1 #

Bases: Circuit

Source code in qml_essentials/ansaetze.py
class Circuit_1(Circuit):
    @staticmethod
    def n_params_per_layer(n_qubits: int) -> int:
        """
        Returns the number of parameters per layer for Circuit_1.

        The total number of parameters is determined by the number of qubits, with
        each qubit contributing 2 parameters.

        Parameters
        ----------
        n_qubits : int
            Number of qubits in the circuit

        Returns
        -------
        int
            Number of parameters per layer
        """
        return n_qubits * 2

    @staticmethod
    def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
        """
        No controlled rotation gates available. Always None.

        Parameters
        ----------
        n_qubits : int
            Number of qubits in the circuit

        Returns
        -------
        Optional[np.ndarray]
            List of all controlled indices, or None if the circuit does not
            contain controlled rotation gates.
        """
        return None

    @staticmethod
    def build(w: np.ndarray, n_qubits: int, noise_params=None):
        """
        Creates a Circuit1 ansatz.

        Length of flattened vector must be n_qubits*2

        Parameters
        ----------
        w : np.ndarray
            Weight vector of size n_qubits*2
        n_qubits : int
            Number of qubits
        noise_params : Optional[Dict[str, float]], optional
            Dictionary of noise parameters to apply to the gates
        """
        w_idx = 0
        for q in range(n_qubits):
            Gates.RX(w[w_idx], wires=q, noise_params=noise_params)
            w_idx += 1
            Gates.RZ(w[w_idx], wires=q, noise_params=noise_params)
            w_idx += 1

build(w, n_qubits, noise_params=None) staticmethod #

Creates a Circuit1 ansatz.

Length of flattened vector must be n_qubits*2

Parameters#

w : np.ndarray Weight vector of size n_qubits*2 n_qubits : int Number of qubits noise_params : Optional[Dict[str, float]], optional Dictionary of noise parameters to apply to the gates

Source code in qml_essentials/ansaetze.py
@staticmethod
def build(w: np.ndarray, n_qubits: int, noise_params=None):
    """
    Creates a Circuit1 ansatz.

    Length of flattened vector must be n_qubits*2

    Parameters
    ----------
    w : np.ndarray
        Weight vector of size n_qubits*2
    n_qubits : int
        Number of qubits
    noise_params : Optional[Dict[str, float]], optional
        Dictionary of noise parameters to apply to the gates
    """
    w_idx = 0
    for q in range(n_qubits):
        Gates.RX(w[w_idx], wires=q, noise_params=noise_params)
        w_idx += 1
        Gates.RZ(w[w_idx], wires=q, noise_params=noise_params)
        w_idx += 1

get_control_indices(n_qubits) staticmethod #

No controlled rotation gates available. Always None.

Parameters#

n_qubits : int Number of qubits in the circuit

Returns#

Optional[np.ndarray] List of all controlled indices, or None if the circuit does not contain controlled rotation gates.

Source code in qml_essentials/ansaetze.py
@staticmethod
def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
    """
    No controlled rotation gates available. Always None.

    Parameters
    ----------
    n_qubits : int
        Number of qubits in the circuit

    Returns
    -------
    Optional[np.ndarray]
        List of all controlled indices, or None if the circuit does not
        contain controlled rotation gates.
    """
    return None

n_params_per_layer(n_qubits) staticmethod #

Returns the number of parameters per layer for Circuit_1.

The total number of parameters is determined by the number of qubits, with each qubit contributing 2 parameters.

Parameters#

n_qubits : int Number of qubits in the circuit

Returns#

int Number of parameters per layer

Source code in qml_essentials/ansaetze.py
@staticmethod
def n_params_per_layer(n_qubits: int) -> int:
    """
    Returns the number of parameters per layer for Circuit_1.

    The total number of parameters is determined by the number of qubits, with
    each qubit contributing 2 parameters.

    Parameters
    ----------
    n_qubits : int
        Number of qubits in the circuit

    Returns
    -------
    int
        Number of parameters per layer
    """
    return n_qubits * 2

Circuit_10 #

Bases: Circuit

Source code in qml_essentials/ansaetze.py
class Circuit_10(Circuit):
    @staticmethod
    def n_params_per_layer(n_qubits: int) -> int:
        """
        Returns the number of parameters per layer for the Circuit_10 ansatz.

        The number of parameters is calculated as n_qubits*2.

        Parameters
        ----------
        n_qubits : int
            Number of qubits in the circuit

        Returns
        -------
        int
            Number of parameters per layer
        """
        return n_qubits * 2  # constant gates not considered yet. has to be fixed

    @staticmethod
    def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
        """
        No controlled rotation gates available. Always None.

        Parameters
        ----------
        n_qubits : int
            Number of qubits in the circuit

        Returns
        -------
        Optional[np.ndarray]
            List of all controlled indices, or None if the circuit does not
            contain controlled rotation gates.
        """
        return None

    @staticmethod
    def build(w: np.ndarray, n_qubits: int, noise_params=None):
        """
        Creates a Circuit10 ansatz.

        Length of flattened vector must be n_qubits*2

        Parameters
        ----------
        w : np.ndarray
            Weight vector of size n_qubits*2
        n_qubits : int
            Number of qubits
        noise_params : Optional[Dict[str, float]], optional
            Dictionary of noise parameters to apply to the gates
        """
        w_idx = 0
        # constant gates, independent of layers. has to be fixed
        for q in range(n_qubits):
            Gates.RY(w[w_idx], wires=q, noise_params=noise_params)
            w_idx += 1

        if n_qubits > 1:
            for q in range(n_qubits - 1):
                Gates.CZ(
                    wires=[
                        (n_qubits - q - 2) % n_qubits,
                        (n_qubits - q - 1) % n_qubits,
                    ],
                    noise_params=noise_params,
                )
            if n_qubits > 2:
                Gates.CZ(wires=[n_qubits - 1, 0], noise_params=noise_params)

        for q in range(n_qubits):
            Gates.RY(w[w_idx], wires=q, noise_params=noise_params)
            w_idx += 1

build(w, n_qubits, noise_params=None) staticmethod #

Creates a Circuit10 ansatz.

Length of flattened vector must be n_qubits*2

Parameters#

w : np.ndarray Weight vector of size n_qubits*2 n_qubits : int Number of qubits noise_params : Optional[Dict[str, float]], optional Dictionary of noise parameters to apply to the gates

Source code in qml_essentials/ansaetze.py
@staticmethod
def build(w: np.ndarray, n_qubits: int, noise_params=None):
    """
    Creates a Circuit10 ansatz.

    Length of flattened vector must be n_qubits*2

    Parameters
    ----------
    w : np.ndarray
        Weight vector of size n_qubits*2
    n_qubits : int
        Number of qubits
    noise_params : Optional[Dict[str, float]], optional
        Dictionary of noise parameters to apply to the gates
    """
    w_idx = 0
    # constant gates, independent of layers. has to be fixed
    for q in range(n_qubits):
        Gates.RY(w[w_idx], wires=q, noise_params=noise_params)
        w_idx += 1

    if n_qubits > 1:
        for q in range(n_qubits - 1):
            Gates.CZ(
                wires=[
                    (n_qubits - q - 2) % n_qubits,
                    (n_qubits - q - 1) % n_qubits,
                ],
                noise_params=noise_params,
            )
        if n_qubits > 2:
            Gates.CZ(wires=[n_qubits - 1, 0], noise_params=noise_params)

    for q in range(n_qubits):
        Gates.RY(w[w_idx], wires=q, noise_params=noise_params)
        w_idx += 1

get_control_indices(n_qubits) staticmethod #

No controlled rotation gates available. Always None.

Parameters#

n_qubits : int Number of qubits in the circuit

Returns#

Optional[np.ndarray] List of all controlled indices, or None if the circuit does not contain controlled rotation gates.

Source code in qml_essentials/ansaetze.py
@staticmethod
def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
    """
    No controlled rotation gates available. Always None.

    Parameters
    ----------
    n_qubits : int
        Number of qubits in the circuit

    Returns
    -------
    Optional[np.ndarray]
        List of all controlled indices, or None if the circuit does not
        contain controlled rotation gates.
    """
    return None

n_params_per_layer(n_qubits) staticmethod #

Returns the number of parameters per layer for the Circuit_10 ansatz.

The number of parameters is calculated as n_qubits*2.

Parameters#

n_qubits : int Number of qubits in the circuit

Returns#

int Number of parameters per layer

Source code in qml_essentials/ansaetze.py
@staticmethod
def n_params_per_layer(n_qubits: int) -> int:
    """
    Returns the number of parameters per layer for the Circuit_10 ansatz.

    The number of parameters is calculated as n_qubits*2.

    Parameters
    ----------
    n_qubits : int
        Number of qubits in the circuit

    Returns
    -------
    int
        Number of parameters per layer
    """
    return n_qubits * 2  # constant gates not considered yet. has to be fixed

Circuit_15 #

Bases: Circuit

Source code in qml_essentials/ansaetze.py
class Circuit_15(Circuit):
    @staticmethod
    def n_params_per_layer(n_qubits: int) -> int:
        """
        Returns the number of parameters per layer for Circuit_15.

        The number of parameters is 2 times the number of qubits.
        A warning is logged if the number of qubits is less than 2.

        Parameters
        ----------
        n_qubits : int
            Number of qubits in the circuit

        Returns
        -------
        int
            Number of parameters required for one layer of the circuit
        """
        if n_qubits > 1:
            return n_qubits * 2
        else:
            log.warning("Number of Qubits < 2, no entanglement available")
            return 2

    @staticmethod
    def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
        """
        No controlled rotation gates available. Always None.

        Parameters
        ----------
        n_qubits : int
            Number of qubits in the circuit

        Returns
        -------
        Optional[np.ndarray]
            List of all controlled indices, or None if the circuit does not
            contain controlled rotation gates.
        """
        return None

    @staticmethod
    def build(w: np.ndarray, n_qubits: int, noise_params=None):
        """
        Creates a Circuit15 ansatz.

        Length of flattened vector must be n_qubits*2
        because for >1 qubits there are three gates

        Parameters
        ----------
        w : np.ndarray
            Weight vector of size n_qubits*2
        n_qubits : int
            Number of qubits
        noise_params : Optional[Dict[str, float]], optional
            Dictionary of noise parameters to apply to the gates
        """
        w_idx = 0
        for q in range(n_qubits):
            Gates.RY(w[w_idx], wires=q, noise_params=noise_params)
            w_idx += 1

        if n_qubits > 1:
            for q in range(n_qubits):
                Gates.CX(
                    wires=[n_qubits - q - 1, (n_qubits - q) % n_qubits],
                    noise_params=noise_params,
                )

        for q in range(n_qubits):
            Gates.RY(w[w_idx], wires=q, noise_params=noise_params)
            w_idx += 1

        if n_qubits > 1:
            for q in range(n_qubits):
                Gates.CX(
                    wires=[(q - 1) % n_qubits, (q - 2) % n_qubits],
                    noise_params=noise_params,
                )

build(w, n_qubits, noise_params=None) staticmethod #

Creates a Circuit15 ansatz.

Length of flattened vector must be n_qubits*2 because for >1 qubits there are three gates

Parameters#

w : np.ndarray Weight vector of size n_qubits*2 n_qubits : int Number of qubits noise_params : Optional[Dict[str, float]], optional Dictionary of noise parameters to apply to the gates

Source code in qml_essentials/ansaetze.py
@staticmethod
def build(w: np.ndarray, n_qubits: int, noise_params=None):
    """
    Creates a Circuit15 ansatz.

    Length of flattened vector must be n_qubits*2
    because for >1 qubits there are three gates

    Parameters
    ----------
    w : np.ndarray
        Weight vector of size n_qubits*2
    n_qubits : int
        Number of qubits
    noise_params : Optional[Dict[str, float]], optional
        Dictionary of noise parameters to apply to the gates
    """
    w_idx = 0
    for q in range(n_qubits):
        Gates.RY(w[w_idx], wires=q, noise_params=noise_params)
        w_idx += 1

    if n_qubits > 1:
        for q in range(n_qubits):
            Gates.CX(
                wires=[n_qubits - q - 1, (n_qubits - q) % n_qubits],
                noise_params=noise_params,
            )

    for q in range(n_qubits):
        Gates.RY(w[w_idx], wires=q, noise_params=noise_params)
        w_idx += 1

    if n_qubits > 1:
        for q in range(n_qubits):
            Gates.CX(
                wires=[(q - 1) % n_qubits, (q - 2) % n_qubits],
                noise_params=noise_params,
            )

get_control_indices(n_qubits) staticmethod #

No controlled rotation gates available. Always None.

Parameters#

n_qubits : int Number of qubits in the circuit

Returns#

Optional[np.ndarray] List of all controlled indices, or None if the circuit does not contain controlled rotation gates.

Source code in qml_essentials/ansaetze.py
@staticmethod
def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
    """
    No controlled rotation gates available. Always None.

    Parameters
    ----------
    n_qubits : int
        Number of qubits in the circuit

    Returns
    -------
    Optional[np.ndarray]
        List of all controlled indices, or None if the circuit does not
        contain controlled rotation gates.
    """
    return None

n_params_per_layer(n_qubits) staticmethod #

Returns the number of parameters per layer for Circuit_15.

The number of parameters is 2 times the number of qubits. A warning is logged if the number of qubits is less than 2.

Parameters#

n_qubits : int Number of qubits in the circuit

Returns#

int Number of parameters required for one layer of the circuit

Source code in qml_essentials/ansaetze.py
@staticmethod
def n_params_per_layer(n_qubits: int) -> int:
    """
    Returns the number of parameters per layer for Circuit_15.

    The number of parameters is 2 times the number of qubits.
    A warning is logged if the number of qubits is less than 2.

    Parameters
    ----------
    n_qubits : int
        Number of qubits in the circuit

    Returns
    -------
    int
        Number of parameters required for one layer of the circuit
    """
    if n_qubits > 1:
        return n_qubits * 2
    else:
        log.warning("Number of Qubits < 2, no entanglement available")
        return 2

Circuit_16 #

Bases: Circuit

Source code in qml_essentials/ansaetze.py
class Circuit_16(Circuit):
    @staticmethod
    def n_params_per_layer(n_qubits: int) -> int:
        """
        Returns the number of parameters per layer for the Circuit_16 ansatz.

        The number of parameters is calculated as n_qubits*3-1.

        Parameters
        ----------
        n_qubits : int
            Number of qubits in the circuit

        Returns
        -------
        int
            Number of parameters per layer
        """

        return n_qubits * 3 - 1

    @staticmethod
    def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
        """
        No controlled rotation gates available. Always None.

        Parameters
        ----------
        n_qubits : int
            Number of qubits in the circuit

        Returns
        -------
        Optional[np.ndarray]
            List of all controlled indices, or None if the circuit does not
            contain controlled rotation gates.
        """
        return None

    @staticmethod
    def build(w: np.ndarray, n_qubits: int, noise_params=None):
        """
        Creates a Circuit16 ansatz.

        Length of flattened vector must be n_qubits*3-1

        Parameters
        ----------
        w : np.ndarray
            Weight vector of size n_qubits*3-1
        n_qubits : int
            Number of qubits
        noise_params : Optional[Dict[str, float]], optional
            Dictionary of noise parameters to apply to the gates
        """
        w_idx = 0
        for q in range(n_qubits):
            Gates.RX(w[w_idx], wires=q, noise_params=noise_params)
            w_idx += 1
            Gates.RZ(w[w_idx], wires=q, noise_params=noise_params)
            w_idx += 1

        if n_qubits > 1:
            for q in range(n_qubits // 2):
                Gates.CRZ(
                    w[w_idx],
                    wires=[(2 * q + 1), (2 * q)],
                    noise_params=noise_params,
                )
                w_idx += 1

            for q in range((n_qubits - 1) // 2):
                Gates.CRZ(
                    w[w_idx],
                    wires=[(2 * q + 2), (2 * q + 1)],
                    noise_params=noise_params,
                )
                w_idx += 1

build(w, n_qubits, noise_params=None) staticmethod #

Creates a Circuit16 ansatz.

Length of flattened vector must be n_qubits*3-1

Parameters#

w : np.ndarray Weight vector of size n_qubits*3-1 n_qubits : int Number of qubits noise_params : Optional[Dict[str, float]], optional Dictionary of noise parameters to apply to the gates

Source code in qml_essentials/ansaetze.py
@staticmethod
def build(w: np.ndarray, n_qubits: int, noise_params=None):
    """
    Creates a Circuit16 ansatz.

    Length of flattened vector must be n_qubits*3-1

    Parameters
    ----------
    w : np.ndarray
        Weight vector of size n_qubits*3-1
    n_qubits : int
        Number of qubits
    noise_params : Optional[Dict[str, float]], optional
        Dictionary of noise parameters to apply to the gates
    """
    w_idx = 0
    for q in range(n_qubits):
        Gates.RX(w[w_idx], wires=q, noise_params=noise_params)
        w_idx += 1
        Gates.RZ(w[w_idx], wires=q, noise_params=noise_params)
        w_idx += 1

    if n_qubits > 1:
        for q in range(n_qubits // 2):
            Gates.CRZ(
                w[w_idx],
                wires=[(2 * q + 1), (2 * q)],
                noise_params=noise_params,
            )
            w_idx += 1

        for q in range((n_qubits - 1) // 2):
            Gates.CRZ(
                w[w_idx],
                wires=[(2 * q + 2), (2 * q + 1)],
                noise_params=noise_params,
            )
            w_idx += 1

get_control_indices(n_qubits) staticmethod #

No controlled rotation gates available. Always None.

Parameters#

n_qubits : int Number of qubits in the circuit

Returns#

Optional[np.ndarray] List of all controlled indices, or None if the circuit does not contain controlled rotation gates.

Source code in qml_essentials/ansaetze.py
@staticmethod
def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
    """
    No controlled rotation gates available. Always None.

    Parameters
    ----------
    n_qubits : int
        Number of qubits in the circuit

    Returns
    -------
    Optional[np.ndarray]
        List of all controlled indices, or None if the circuit does not
        contain controlled rotation gates.
    """
    return None

n_params_per_layer(n_qubits) staticmethod #

Returns the number of parameters per layer for the Circuit_16 ansatz.

The number of parameters is calculated as n_qubits*3-1.

Parameters#

n_qubits : int Number of qubits in the circuit

Returns#

int Number of parameters per layer

Source code in qml_essentials/ansaetze.py
@staticmethod
def n_params_per_layer(n_qubits: int) -> int:
    """
    Returns the number of parameters per layer for the Circuit_16 ansatz.

    The number of parameters is calculated as n_qubits*3-1.

    Parameters
    ----------
    n_qubits : int
        Number of qubits in the circuit

    Returns
    -------
    int
        Number of parameters per layer
    """

    return n_qubits * 3 - 1

Circuit_17 #

Bases: Circuit

Source code in qml_essentials/ansaetze.py
class Circuit_17(Circuit):
    @staticmethod
    def n_params_per_layer(n_qubits: int) -> int:
        """
        Returns the number of parameters per layer for the Circuit_17 ansatz.

        The number of parameters is calculated as n_qubits*3-1.

        Parameters
        ----------
        n_qubits : int
            Number of qubits in the circuit

        Returns
        -------
        int
            Number of parameters per layer
        """

        return n_qubits * 3 - 1

    @staticmethod
    def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
        """
        No controlled rotation gates available. Always None.

        Parameters
        ----------
        n_qubits : int
            Number of qubits in the circuit

        Returns
        -------
        Optional[np.ndarray]
            List of all controlled indices, or None if the circuit does not
            contain controlled rotation gates.
        """
        return None

    @staticmethod
    def build(w: np.ndarray, n_qubits: int, noise_params=None):
        """
        Creates a Circuit17 ansatz.

        Length of flattened vector must be n_qubits*3-1

        Parameters
        ----------
        w : np.ndarray
            Weight vector of size n_qubits*3-1
        n_qubits : int
            Number of qubits
        noise_params : Optional[Dict[str, float]], optional
            Dictionary of noise parameters to apply to the gates
        """
        w_idx = 0
        for q in range(n_qubits):
            Gates.RX(w[w_idx], wires=q, noise_params=noise_params)
            w_idx += 1
            Gates.RZ(w[w_idx], wires=q, noise_params=noise_params)
            w_idx += 1

        if n_qubits > 1:
            for q in range(n_qubits // 2):
                Gates.CRX(
                    w[w_idx],
                    wires=[(2 * q + 1), (2 * q)],
                    noise_params=noise_params,
                )
                w_idx += 1

            for q in range((n_qubits - 1) // 2):
                Gates.CRX(
                    w[w_idx],
                    wires=[(2 * q + 2), (2 * q + 1)],
                    noise_params=noise_params,
                )
                w_idx += 1

build(w, n_qubits, noise_params=None) staticmethod #

Creates a Circuit17 ansatz.

Length of flattened vector must be n_qubits*3-1

Parameters#

w : np.ndarray Weight vector of size n_qubits*3-1 n_qubits : int Number of qubits noise_params : Optional[Dict[str, float]], optional Dictionary of noise parameters to apply to the gates

Source code in qml_essentials/ansaetze.py
@staticmethod
def build(w: np.ndarray, n_qubits: int, noise_params=None):
    """
    Creates a Circuit17 ansatz.

    Length of flattened vector must be n_qubits*3-1

    Parameters
    ----------
    w : np.ndarray
        Weight vector of size n_qubits*3-1
    n_qubits : int
        Number of qubits
    noise_params : Optional[Dict[str, float]], optional
        Dictionary of noise parameters to apply to the gates
    """
    w_idx = 0
    for q in range(n_qubits):
        Gates.RX(w[w_idx], wires=q, noise_params=noise_params)
        w_idx += 1
        Gates.RZ(w[w_idx], wires=q, noise_params=noise_params)
        w_idx += 1

    if n_qubits > 1:
        for q in range(n_qubits // 2):
            Gates.CRX(
                w[w_idx],
                wires=[(2 * q + 1), (2 * q)],
                noise_params=noise_params,
            )
            w_idx += 1

        for q in range((n_qubits - 1) // 2):
            Gates.CRX(
                w[w_idx],
                wires=[(2 * q + 2), (2 * q + 1)],
                noise_params=noise_params,
            )
            w_idx += 1

get_control_indices(n_qubits) staticmethod #

No controlled rotation gates available. Always None.

Parameters#

n_qubits : int Number of qubits in the circuit

Returns#

Optional[np.ndarray] List of all controlled indices, or None if the circuit does not contain controlled rotation gates.

Source code in qml_essentials/ansaetze.py
@staticmethod
def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
    """
    No controlled rotation gates available. Always None.

    Parameters
    ----------
    n_qubits : int
        Number of qubits in the circuit

    Returns
    -------
    Optional[np.ndarray]
        List of all controlled indices, or None if the circuit does not
        contain controlled rotation gates.
    """
    return None

n_params_per_layer(n_qubits) staticmethod #

Returns the number of parameters per layer for the Circuit_17 ansatz.

The number of parameters is calculated as n_qubits*3-1.

Parameters#

n_qubits : int Number of qubits in the circuit

Returns#

int Number of parameters per layer

Source code in qml_essentials/ansaetze.py
@staticmethod
def n_params_per_layer(n_qubits: int) -> int:
    """
    Returns the number of parameters per layer for the Circuit_17 ansatz.

    The number of parameters is calculated as n_qubits*3-1.

    Parameters
    ----------
    n_qubits : int
        Number of qubits in the circuit

    Returns
    -------
    int
        Number of parameters per layer
    """

    return n_qubits * 3 - 1

Circuit_18 #

Bases: Circuit

Source code in qml_essentials/ansaetze.py
class Circuit_18(Circuit):
    @staticmethod
    def n_params_per_layer(n_qubits: int) -> int:
        """
        Returns the number of parameters per layer for Circuit_18.

        The number of parameters is 3 times the number of qubits when there
        is more than one qubit, as each qubit contributes 3 parameters.
        If the number of qubits is less than 2, a warning is logged since
        no entanglement is possible, and a fixed number of 2 parameters is used.

        Parameters
        ----------
        n_qubits : int
            Number of qubits in the circuit

        Returns
        -------
        int
            Number of parameters required for one layer of the circuit
        """
        if n_qubits > 1:
            return n_qubits * 3
        else:
            log.warning("Number of Qubits < 2, no entanglement available")
            return 2

    @staticmethod
    def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
        """
        Returns the indices for the controlled rotation gates for one layer.
        Indices should slice the list of all parameters for one layer as follows:
        [indices[0]:indices[1]:indices[2]]

        Parameters
        ----------
        n_qubits : int
            Number of qubits in the circuit

        Returns
        -------
        Optional[np.ndarray]
            List of all controlled indices, or None if the circuit does not
            contain controlled rotation gates.
        """
        if n_qubits > 1:
            return [-n_qubits, None, None]
        else:
            return None

    @staticmethod
    def build(w: np.ndarray, n_qubits: int, noise_params=None):
        """
        Creates a Circuit18 ansatz.

        Length of flattened vector must be n_qubits*3

        Parameters
        ----------
        w : np.ndarray
            Weight vector of size n_qubits*3
        n_qubits : int
            Number of qubits
        noise_params : Optional[Dict[str, float]], optional
            Dictionary of noise parameters to apply to the gates
        """
        w_idx = 0
        for q in range(n_qubits):
            Gates.RX(w[w_idx], wires=q, noise_params=noise_params)
            w_idx += 1
            Gates.RZ(w[w_idx], wires=q, noise_params=noise_params)
            w_idx += 1

        if n_qubits > 1:
            for q in range(n_qubits):
                Gates.CRZ(
                    w[w_idx],
                    wires=[n_qubits - q - 1, (n_qubits - q) % n_qubits],
                    noise_params=noise_params,
                )
                w_idx += 1

build(w, n_qubits, noise_params=None) staticmethod #

Creates a Circuit18 ansatz.

Length of flattened vector must be n_qubits*3

Parameters#

w : np.ndarray Weight vector of size n_qubits*3 n_qubits : int Number of qubits noise_params : Optional[Dict[str, float]], optional Dictionary of noise parameters to apply to the gates

Source code in qml_essentials/ansaetze.py
@staticmethod
def build(w: np.ndarray, n_qubits: int, noise_params=None):
    """
    Creates a Circuit18 ansatz.

    Length of flattened vector must be n_qubits*3

    Parameters
    ----------
    w : np.ndarray
        Weight vector of size n_qubits*3
    n_qubits : int
        Number of qubits
    noise_params : Optional[Dict[str, float]], optional
        Dictionary of noise parameters to apply to the gates
    """
    w_idx = 0
    for q in range(n_qubits):
        Gates.RX(w[w_idx], wires=q, noise_params=noise_params)
        w_idx += 1
        Gates.RZ(w[w_idx], wires=q, noise_params=noise_params)
        w_idx += 1

    if n_qubits > 1:
        for q in range(n_qubits):
            Gates.CRZ(
                w[w_idx],
                wires=[n_qubits - q - 1, (n_qubits - q) % n_qubits],
                noise_params=noise_params,
            )
            w_idx += 1

get_control_indices(n_qubits) staticmethod #

Returns the indices for the controlled rotation gates for one layer. Indices should slice the list of all parameters for one layer as follows: [indices[0]:indices[1]:indices[2]]

Parameters#

n_qubits : int Number of qubits in the circuit

Returns#

Optional[np.ndarray] List of all controlled indices, or None if the circuit does not contain controlled rotation gates.

Source code in qml_essentials/ansaetze.py
@staticmethod
def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
    """
    Returns the indices for the controlled rotation gates for one layer.
    Indices should slice the list of all parameters for one layer as follows:
    [indices[0]:indices[1]:indices[2]]

    Parameters
    ----------
    n_qubits : int
        Number of qubits in the circuit

    Returns
    -------
    Optional[np.ndarray]
        List of all controlled indices, or None if the circuit does not
        contain controlled rotation gates.
    """
    if n_qubits > 1:
        return [-n_qubits, None, None]
    else:
        return None

n_params_per_layer(n_qubits) staticmethod #

Returns the number of parameters per layer for Circuit_18.

The number of parameters is 3 times the number of qubits when there is more than one qubit, as each qubit contributes 3 parameters. If the number of qubits is less than 2, a warning is logged since no entanglement is possible, and a fixed number of 2 parameters is used.

Parameters#

n_qubits : int Number of qubits in the circuit

Returns#

int Number of parameters required for one layer of the circuit

Source code in qml_essentials/ansaetze.py
@staticmethod
def n_params_per_layer(n_qubits: int) -> int:
    """
    Returns the number of parameters per layer for Circuit_18.

    The number of parameters is 3 times the number of qubits when there
    is more than one qubit, as each qubit contributes 3 parameters.
    If the number of qubits is less than 2, a warning is logged since
    no entanglement is possible, and a fixed number of 2 parameters is used.

    Parameters
    ----------
    n_qubits : int
        Number of qubits in the circuit

    Returns
    -------
    int
        Number of parameters required for one layer of the circuit
    """
    if n_qubits > 1:
        return n_qubits * 3
    else:
        log.warning("Number of Qubits < 2, no entanglement available")
        return 2

Circuit_19 #

Bases: Circuit

Source code in qml_essentials/ansaetze.py
class Circuit_19(Circuit):
    @staticmethod
    def n_params_per_layer(n_qubits: int) -> int:
        """
        Returns the number of parameters per layer for Circuit_19.

        The number of parameters is 3 times the number of qubits when there
        is more than one qubit, as each qubit contributes 3 parameters.
        If the number of qubits is less than 2, a warning is logged since
        no entanglement is possible, and a fixed number of 2 parameters is used.

        Parameters
        ----------
        n_qubits : int
            Number of qubits in the circuit

        Returns
        -------
        int
            Number of parameters required for one layer of the circuit
        """

        if n_qubits > 1:
            return n_qubits * 3
        else:
            log.warning("Number of Qubits < 2, no entanglement available")
            return 2

    @staticmethod
    def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
        """
        Returns the indices for the controlled rotation gates for one layer.
        Indices should slice the list of all parameters for one layer as follows:
        [indices[0]:indices[1]:indices[2]]

        Parameters
        ----------
        n_qubits : int
            Number of qubits in the circuit

        Returns
        -------
        Optional[np.ndarray]
            List of all controlled indices, or None if the circuit does not
            contain controlled rotation gates.
        """
        if n_qubits > 1:
            return [-n_qubits, None, None]
        else:
            return None

    @staticmethod
    def build(w: np.ndarray, n_qubits: int, noise_params=None):
        """
        Creates a Circuit19 ansatz.

        Length of flattened vector must be n_qubits*3
        because for >1 qubits there are three gates

        Parameters
        ----------
        w : np.ndarray
            Weight vector of size n_qubits*3
        n_qubits : int
            Number of qubits
        noise_params : Optional[Dict[str, float]], optional
            Dictionary of noise parameters to apply to the gates
        """
        w_idx = 0
        for q in range(n_qubits):
            Gates.RX(w[w_idx], wires=q, noise_params=noise_params)
            w_idx += 1
            Gates.RZ(w[w_idx], wires=q, noise_params=noise_params)
            w_idx += 1

        if n_qubits > 1:
            for q in range(n_qubits):
                Gates.CRX(
                    w[w_idx],
                    wires=[n_qubits - q - 1, (n_qubits - q) % n_qubits],
                    noise_params=noise_params,
                )
                w_idx += 1

build(w, n_qubits, noise_params=None) staticmethod #

Creates a Circuit19 ansatz.

Length of flattened vector must be n_qubits*3 because for >1 qubits there are three gates

Parameters#

w : np.ndarray Weight vector of size n_qubits*3 n_qubits : int Number of qubits noise_params : Optional[Dict[str, float]], optional Dictionary of noise parameters to apply to the gates

Source code in qml_essentials/ansaetze.py
@staticmethod
def build(w: np.ndarray, n_qubits: int, noise_params=None):
    """
    Creates a Circuit19 ansatz.

    Length of flattened vector must be n_qubits*3
    because for >1 qubits there are three gates

    Parameters
    ----------
    w : np.ndarray
        Weight vector of size n_qubits*3
    n_qubits : int
        Number of qubits
    noise_params : Optional[Dict[str, float]], optional
        Dictionary of noise parameters to apply to the gates
    """
    w_idx = 0
    for q in range(n_qubits):
        Gates.RX(w[w_idx], wires=q, noise_params=noise_params)
        w_idx += 1
        Gates.RZ(w[w_idx], wires=q, noise_params=noise_params)
        w_idx += 1

    if n_qubits > 1:
        for q in range(n_qubits):
            Gates.CRX(
                w[w_idx],
                wires=[n_qubits - q - 1, (n_qubits - q) % n_qubits],
                noise_params=noise_params,
            )
            w_idx += 1

get_control_indices(n_qubits) staticmethod #

Returns the indices for the controlled rotation gates for one layer. Indices should slice the list of all parameters for one layer as follows: [indices[0]:indices[1]:indices[2]]

Parameters#

n_qubits : int Number of qubits in the circuit

Returns#

Optional[np.ndarray] List of all controlled indices, or None if the circuit does not contain controlled rotation gates.

Source code in qml_essentials/ansaetze.py
@staticmethod
def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
    """
    Returns the indices for the controlled rotation gates for one layer.
    Indices should slice the list of all parameters for one layer as follows:
    [indices[0]:indices[1]:indices[2]]

    Parameters
    ----------
    n_qubits : int
        Number of qubits in the circuit

    Returns
    -------
    Optional[np.ndarray]
        List of all controlled indices, or None if the circuit does not
        contain controlled rotation gates.
    """
    if n_qubits > 1:
        return [-n_qubits, None, None]
    else:
        return None

n_params_per_layer(n_qubits) staticmethod #

Returns the number of parameters per layer for Circuit_19.

The number of parameters is 3 times the number of qubits when there is more than one qubit, as each qubit contributes 3 parameters. If the number of qubits is less than 2, a warning is logged since no entanglement is possible, and a fixed number of 2 parameters is used.

Parameters#

n_qubits : int Number of qubits in the circuit

Returns#

int Number of parameters required for one layer of the circuit

Source code in qml_essentials/ansaetze.py
@staticmethod
def n_params_per_layer(n_qubits: int) -> int:
    """
    Returns the number of parameters per layer for Circuit_19.

    The number of parameters is 3 times the number of qubits when there
    is more than one qubit, as each qubit contributes 3 parameters.
    If the number of qubits is less than 2, a warning is logged since
    no entanglement is possible, and a fixed number of 2 parameters is used.

    Parameters
    ----------
    n_qubits : int
        Number of qubits in the circuit

    Returns
    -------
    int
        Number of parameters required for one layer of the circuit
    """

    if n_qubits > 1:
        return n_qubits * 3
    else:
        log.warning("Number of Qubits < 2, no entanglement available")
        return 2

Circuit_2 #

Bases: Circuit

Source code in qml_essentials/ansaetze.py
class Circuit_2(Circuit):
    @staticmethod
    def n_params_per_layer(n_qubits: int) -> int:
        """
        Returns the number of parameters per layer for Circuit_2.

        The total number of parameters is determined by the number of qubits, with
        each qubit contributing 2 parameters.

        Parameters
        ----------
        n_qubits : int
            Number of qubits in the circuit

        Returns
        -------
        int
            Number of parameters per layer
        """
        return n_qubits * 2

    @staticmethod
    def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
        """
        No controlled rotation gates available. Always None.

        Parameters
        ----------
        n_qubits : int
            Number of qubits in the circuit

        Returns
        -------
        Optional[np.ndarray]
            List of all controlled indices, or None if the circuit does not
            contain controlled rotation gates.
        """
        return None

    @staticmethod
    def build(w: np.ndarray, n_qubits: int, noise_params=None):
        """
        Creates a Circuit2 ansatz.

        Length of flattened vector must be n_qubits*2

        Parameters
        ----------
        w : np.ndarray
            Weight vector of size n_qubits*2
        n_qubits : int
            Number of qubits
        noise_params : Optional[Dict[str, float]], optional
            Dictionary of noise parameters to apply to the gates
        """
        w_idx = 0
        for q in range(n_qubits):
            Gates.RX(w[w_idx], wires=q, noise_params=noise_params)
            w_idx += 1
            Gates.RZ(w[w_idx], wires=q, noise_params=noise_params)
            w_idx += 1

        if n_qubits > 1:
            for q in range(n_qubits - 1):
                Gates.CX(
                    wires=[n_qubits - q - 1, n_qubits - q - 2],
                    noise_params=noise_params,
                )

build(w, n_qubits, noise_params=None) staticmethod #

Creates a Circuit2 ansatz.

Length of flattened vector must be n_qubits*2

Parameters#

w : np.ndarray Weight vector of size n_qubits*2 n_qubits : int Number of qubits noise_params : Optional[Dict[str, float]], optional Dictionary of noise parameters to apply to the gates

Source code in qml_essentials/ansaetze.py
@staticmethod
def build(w: np.ndarray, n_qubits: int, noise_params=None):
    """
    Creates a Circuit2 ansatz.

    Length of flattened vector must be n_qubits*2

    Parameters
    ----------
    w : np.ndarray
        Weight vector of size n_qubits*2
    n_qubits : int
        Number of qubits
    noise_params : Optional[Dict[str, float]], optional
        Dictionary of noise parameters to apply to the gates
    """
    w_idx = 0
    for q in range(n_qubits):
        Gates.RX(w[w_idx], wires=q, noise_params=noise_params)
        w_idx += 1
        Gates.RZ(w[w_idx], wires=q, noise_params=noise_params)
        w_idx += 1

    if n_qubits > 1:
        for q in range(n_qubits - 1):
            Gates.CX(
                wires=[n_qubits - q - 1, n_qubits - q - 2],
                noise_params=noise_params,
            )

get_control_indices(n_qubits) staticmethod #

No controlled rotation gates available. Always None.

Parameters#

n_qubits : int Number of qubits in the circuit

Returns#

Optional[np.ndarray] List of all controlled indices, or None if the circuit does not contain controlled rotation gates.

Source code in qml_essentials/ansaetze.py
@staticmethod
def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
    """
    No controlled rotation gates available. Always None.

    Parameters
    ----------
    n_qubits : int
        Number of qubits in the circuit

    Returns
    -------
    Optional[np.ndarray]
        List of all controlled indices, or None if the circuit does not
        contain controlled rotation gates.
    """
    return None

n_params_per_layer(n_qubits) staticmethod #

Returns the number of parameters per layer for Circuit_2.

The total number of parameters is determined by the number of qubits, with each qubit contributing 2 parameters.

Parameters#

n_qubits : int Number of qubits in the circuit

Returns#

int Number of parameters per layer

Source code in qml_essentials/ansaetze.py
@staticmethod
def n_params_per_layer(n_qubits: int) -> int:
    """
    Returns the number of parameters per layer for Circuit_2.

    The total number of parameters is determined by the number of qubits, with
    each qubit contributing 2 parameters.

    Parameters
    ----------
    n_qubits : int
        Number of qubits in the circuit

    Returns
    -------
    int
        Number of parameters per layer
    """
    return n_qubits * 2

Circuit_3 #

Bases: Circuit

Source code in qml_essentials/ansaetze.py
class Circuit_3(Circuit):
    @staticmethod
    def n_params_per_layer(n_qubits: int) -> int:
        """
        Calculates the number of parameters per layer for Circuit3.

        The number of parameters per layer is given by the number of qubits, with
        each qubit contributing 3 parameters. The last qubit only contributes 2
        parameters because it is the target qubit for the controlled gates.

        Parameters
        ----------
        n_qubits : int
            Number of qubits in the circuit

        Returns
        -------
        int
            Number of parameters per layer
        """
        return n_qubits * 3 - 1

    @staticmethod
    def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
        """
        No controlled rotation gates available. Always None.

        Parameters
        ----------
        n_qubits : int
            Number of qubits in the circuit

        Returns
        -------
        Optional[np.ndarray]
            List of all controlled indices, or None if the circuit does not
            contain controlled rotation gates.
        """
        return None

    @staticmethod
    def build(w: np.ndarray, n_qubits: int, noise_params=None):
        """
        Creates a Circuit3 ansatz.

        Length of flattened vector must be n_qubits*3-1

        Parameters
        ----------
        w : np.ndarray
            Weight vector of size n_qubits*3-1
        n_qubits : int
            Number of qubits
        noise_params : Optional[Dict[str, float]], optional
            Dictionary of noise parameters to apply to the gates
        """
        w_idx = 0
        for q in range(n_qubits):
            Gates.RX(w[w_idx], wires=q, noise_params=noise_params)
            w_idx += 1
            Gates.RZ(w[w_idx], wires=q, noise_params=noise_params)
            w_idx += 1

        if n_qubits > 1:
            for q in range(n_qubits - 1):
                Gates.CRZ(
                    w[w_idx],
                    wires=[n_qubits - q - 1, n_qubits - q - 2],
                    noise_params=noise_params,
                )
                w_idx += 1

build(w, n_qubits, noise_params=None) staticmethod #

Creates a Circuit3 ansatz.

Length of flattened vector must be n_qubits*3-1

Parameters#

w : np.ndarray Weight vector of size n_qubits*3-1 n_qubits : int Number of qubits noise_params : Optional[Dict[str, float]], optional Dictionary of noise parameters to apply to the gates

Source code in qml_essentials/ansaetze.py
@staticmethod
def build(w: np.ndarray, n_qubits: int, noise_params=None):
    """
    Creates a Circuit3 ansatz.

    Length of flattened vector must be n_qubits*3-1

    Parameters
    ----------
    w : np.ndarray
        Weight vector of size n_qubits*3-1
    n_qubits : int
        Number of qubits
    noise_params : Optional[Dict[str, float]], optional
        Dictionary of noise parameters to apply to the gates
    """
    w_idx = 0
    for q in range(n_qubits):
        Gates.RX(w[w_idx], wires=q, noise_params=noise_params)
        w_idx += 1
        Gates.RZ(w[w_idx], wires=q, noise_params=noise_params)
        w_idx += 1

    if n_qubits > 1:
        for q in range(n_qubits - 1):
            Gates.CRZ(
                w[w_idx],
                wires=[n_qubits - q - 1, n_qubits - q - 2],
                noise_params=noise_params,
            )
            w_idx += 1

get_control_indices(n_qubits) staticmethod #

No controlled rotation gates available. Always None.

Parameters#

n_qubits : int Number of qubits in the circuit

Returns#

Optional[np.ndarray] List of all controlled indices, or None if the circuit does not contain controlled rotation gates.

Source code in qml_essentials/ansaetze.py
@staticmethod
def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
    """
    No controlled rotation gates available. Always None.

    Parameters
    ----------
    n_qubits : int
        Number of qubits in the circuit

    Returns
    -------
    Optional[np.ndarray]
        List of all controlled indices, or None if the circuit does not
        contain controlled rotation gates.
    """
    return None

n_params_per_layer(n_qubits) staticmethod #

Calculates the number of parameters per layer for Circuit3.

The number of parameters per layer is given by the number of qubits, with each qubit contributing 3 parameters. The last qubit only contributes 2 parameters because it is the target qubit for the controlled gates.

Parameters#

n_qubits : int Number of qubits in the circuit

Returns#

int Number of parameters per layer

Source code in qml_essentials/ansaetze.py
@staticmethod
def n_params_per_layer(n_qubits: int) -> int:
    """
    Calculates the number of parameters per layer for Circuit3.

    The number of parameters per layer is given by the number of qubits, with
    each qubit contributing 3 parameters. The last qubit only contributes 2
    parameters because it is the target qubit for the controlled gates.

    Parameters
    ----------
    n_qubits : int
        Number of qubits in the circuit

    Returns
    -------
    int
        Number of parameters per layer
    """
    return n_qubits * 3 - 1

Circuit_4 #

Bases: Circuit

Source code in qml_essentials/ansaetze.py
class Circuit_4(Circuit):
    @staticmethod
    def n_params_per_layer(n_qubits: int) -> int:
        """
        Returns the number of parameters per layer for the Circuit_4 ansatz.

        The number of parameters is calculated as n_qubits*3-1.

        Parameters
        ----------
        n_qubits : int
            Number of qubits in the circuit

        Returns
        -------
        int
            Number of parameters per layer
        """
        return n_qubits * 3 - 1

    @staticmethod
    def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
        """
        No controlled rotation gates available. Always None.

        Parameters
        ----------
        n_qubits : int
            Number of qubits in the circuit

        Returns
        -------
        Optional[np.ndarray]
            List of all controlled indices, or None if the circuit does not
            contain controlled rotation gates.
        """
        return None

    @staticmethod
    def build(w: np.ndarray, n_qubits: int, noise_params=None):
        """
        Creates a Circuit4 ansatz.

        Length of flattened vector must be n_qubits*3-1

        Parameters
        ----------
        w : np.ndarray
            Weight vector of size n_qubits*3-1
        n_qubits : int
            Number of qubits
        noise_params : Optional[Dict[str, float]], optional
            Dictionary of noise parameters to apply to the gates
        """
        w_idx = 0
        for q in range(n_qubits):
            Gates.RX(w[w_idx], wires=q, noise_params=noise_params)
            w_idx += 1
            Gates.RZ(w[w_idx], wires=q, noise_params=noise_params)
            w_idx += 1

        if n_qubits > 1:
            for q in range(n_qubits - 1):
                Gates.CRX(
                    w[w_idx],
                    wires=[n_qubits - q - 1, n_qubits - q - 2],
                    noise_params=noise_params,
                )
                w_idx += 1

build(w, n_qubits, noise_params=None) staticmethod #

Creates a Circuit4 ansatz.

Length of flattened vector must be n_qubits*3-1

Parameters#

w : np.ndarray Weight vector of size n_qubits*3-1 n_qubits : int Number of qubits noise_params : Optional[Dict[str, float]], optional Dictionary of noise parameters to apply to the gates

Source code in qml_essentials/ansaetze.py
@staticmethod
def build(w: np.ndarray, n_qubits: int, noise_params=None):
    """
    Creates a Circuit4 ansatz.

    Length of flattened vector must be n_qubits*3-1

    Parameters
    ----------
    w : np.ndarray
        Weight vector of size n_qubits*3-1
    n_qubits : int
        Number of qubits
    noise_params : Optional[Dict[str, float]], optional
        Dictionary of noise parameters to apply to the gates
    """
    w_idx = 0
    for q in range(n_qubits):
        Gates.RX(w[w_idx], wires=q, noise_params=noise_params)
        w_idx += 1
        Gates.RZ(w[w_idx], wires=q, noise_params=noise_params)
        w_idx += 1

    if n_qubits > 1:
        for q in range(n_qubits - 1):
            Gates.CRX(
                w[w_idx],
                wires=[n_qubits - q - 1, n_qubits - q - 2],
                noise_params=noise_params,
            )
            w_idx += 1

get_control_indices(n_qubits) staticmethod #

No controlled rotation gates available. Always None.

Parameters#

n_qubits : int Number of qubits in the circuit

Returns#

Optional[np.ndarray] List of all controlled indices, or None if the circuit does not contain controlled rotation gates.

Source code in qml_essentials/ansaetze.py
@staticmethod
def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
    """
    No controlled rotation gates available. Always None.

    Parameters
    ----------
    n_qubits : int
        Number of qubits in the circuit

    Returns
    -------
    Optional[np.ndarray]
        List of all controlled indices, or None if the circuit does not
        contain controlled rotation gates.
    """
    return None

n_params_per_layer(n_qubits) staticmethod #

Returns the number of parameters per layer for the Circuit_4 ansatz.

The number of parameters is calculated as n_qubits*3-1.

Parameters#

n_qubits : int Number of qubits in the circuit

Returns#

int Number of parameters per layer

Source code in qml_essentials/ansaetze.py
@staticmethod
def n_params_per_layer(n_qubits: int) -> int:
    """
    Returns the number of parameters per layer for the Circuit_4 ansatz.

    The number of parameters is calculated as n_qubits*3-1.

    Parameters
    ----------
    n_qubits : int
        Number of qubits in the circuit

    Returns
    -------
    int
        Number of parameters per layer
    """
    return n_qubits * 3 - 1

Circuit_6 #

Bases: Circuit

Source code in qml_essentials/ansaetze.py
class Circuit_6(Circuit):
    @staticmethod
    def n_params_per_layer(n_qubits: int) -> int:
        """
        Returns the number of parameters per layer for Circuit_6.

        The total number of parameters is n_qubits*3+n_qubits**2, which is
        the number of rotations n_qubits*3 plus the number of entangling gates
        n_qubits**2.

        If n_qubits is 1, the number of parameters is 4, and a warning is logged
        since no entanglement is possible.

        Parameters
        ----------
        n_qubits : int
            Number of qubits

        Returns
        -------
        int
            Number of parameters per layer
        """
        if n_qubits > 1:
            return n_qubits * 3 + n_qubits**2
        else:
            log.warning("Number of Qubits < 2, no entanglement available")
            return 4

    @staticmethod
    def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
        """
        Returns the indices for the controlled rotation gates for one layer.
        Indices should slice the list of all parameters for one layer as follows:
        [indices[0]:indices[1]:indices[2]]

        Parameters
        ----------
        n_qubits : int
            Number of qubits in the circuit

        Returns
        -------
        Optional[np.ndarray]
            List of all controlled indices, or None if the circuit does not
            contain controlled rotation gates.
        """
        if n_qubits > 1:
            return [-n_qubits, None, None]
        else:
            return None

    @staticmethod
    def build(w: np.ndarray, n_qubits: int, noise_params=None):
        """
        Creates a Circuit6 ansatz.

        Length of flattened vector must be
            n_qubits*4+n_qubits*(n_qubits-1) =
            n_qubits*3+n_qubits**2

        Parameters
        ----------
        w : np.ndarray
            Weight vector of size
                n_layers*(n_qubits*3+n_qubits**2)
        n_qubits : int
            Number of qubits
        noise_params : Optional[Dict[str, float]], optional
            Dictionary of noise parameters to apply to the gates
        """
        w_idx = 0
        for q in range(n_qubits):
            Gates.RX(w[w_idx], wires=q, noise_params=noise_params)
            w_idx += 1
            Gates.RZ(w[w_idx], wires=q, noise_params=noise_params)
            w_idx += 1

        if n_qubits > 1:
            for ql in range(n_qubits):
                for q in range(n_qubits):
                    if q == ql:
                        continue
                    Gates.CRX(
                        w[w_idx],
                        wires=[n_qubits - ql - 1, (n_qubits - q - 1) % n_qubits],
                        noise_params=noise_params,
                    )
                    w_idx += 1

        for q in range(n_qubits):
            Gates.RX(w[w_idx], wires=q, noise_params=noise_params)
            w_idx += 1
            Gates.RZ(w[w_idx], wires=q, noise_params=noise_params)
            w_idx += 1

build(w, n_qubits, noise_params=None) staticmethod #

Creates a Circuit6 ansatz.

Length of flattened vector must be n_qubits4+n_qubits(n_qubits-1) = n_qubits3+n_qubits*2

Parameters#

w : np.ndarray Weight vector of size n_layers(n_qubits3+n_qubits**2) n_qubits : int Number of qubits noise_params : Optional[Dict[str, float]], optional Dictionary of noise parameters to apply to the gates

Source code in qml_essentials/ansaetze.py
@staticmethod
def build(w: np.ndarray, n_qubits: int, noise_params=None):
    """
    Creates a Circuit6 ansatz.

    Length of flattened vector must be
        n_qubits*4+n_qubits*(n_qubits-1) =
        n_qubits*3+n_qubits**2

    Parameters
    ----------
    w : np.ndarray
        Weight vector of size
            n_layers*(n_qubits*3+n_qubits**2)
    n_qubits : int
        Number of qubits
    noise_params : Optional[Dict[str, float]], optional
        Dictionary of noise parameters to apply to the gates
    """
    w_idx = 0
    for q in range(n_qubits):
        Gates.RX(w[w_idx], wires=q, noise_params=noise_params)
        w_idx += 1
        Gates.RZ(w[w_idx], wires=q, noise_params=noise_params)
        w_idx += 1

    if n_qubits > 1:
        for ql in range(n_qubits):
            for q in range(n_qubits):
                if q == ql:
                    continue
                Gates.CRX(
                    w[w_idx],
                    wires=[n_qubits - ql - 1, (n_qubits - q - 1) % n_qubits],
                    noise_params=noise_params,
                )
                w_idx += 1

    for q in range(n_qubits):
        Gates.RX(w[w_idx], wires=q, noise_params=noise_params)
        w_idx += 1
        Gates.RZ(w[w_idx], wires=q, noise_params=noise_params)
        w_idx += 1

get_control_indices(n_qubits) staticmethod #

Returns the indices for the controlled rotation gates for one layer. Indices should slice the list of all parameters for one layer as follows: [indices[0]:indices[1]:indices[2]]

Parameters#

n_qubits : int Number of qubits in the circuit

Returns#

Optional[np.ndarray] List of all controlled indices, or None if the circuit does not contain controlled rotation gates.

Source code in qml_essentials/ansaetze.py
@staticmethod
def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
    """
    Returns the indices for the controlled rotation gates for one layer.
    Indices should slice the list of all parameters for one layer as follows:
    [indices[0]:indices[1]:indices[2]]

    Parameters
    ----------
    n_qubits : int
        Number of qubits in the circuit

    Returns
    -------
    Optional[np.ndarray]
        List of all controlled indices, or None if the circuit does not
        contain controlled rotation gates.
    """
    if n_qubits > 1:
        return [-n_qubits, None, None]
    else:
        return None

n_params_per_layer(n_qubits) staticmethod #

Returns the number of parameters per layer for Circuit_6.

The total number of parameters is n_qubits3+n_qubits2, which is the number of rotations n_qubits3 plus the number of entangling gates n_qubits**2.

If n_qubits is 1, the number of parameters is 4, and a warning is logged since no entanglement is possible.

Parameters#

n_qubits : int Number of qubits

Returns#

int Number of parameters per layer

Source code in qml_essentials/ansaetze.py
@staticmethod
def n_params_per_layer(n_qubits: int) -> int:
    """
    Returns the number of parameters per layer for Circuit_6.

    The total number of parameters is n_qubits*3+n_qubits**2, which is
    the number of rotations n_qubits*3 plus the number of entangling gates
    n_qubits**2.

    If n_qubits is 1, the number of parameters is 4, and a warning is logged
    since no entanglement is possible.

    Parameters
    ----------
    n_qubits : int
        Number of qubits

    Returns
    -------
    int
        Number of parameters per layer
    """
    if n_qubits > 1:
        return n_qubits * 3 + n_qubits**2
    else:
        log.warning("Number of Qubits < 2, no entanglement available")
        return 4

Circuit_9 #

Bases: Circuit

Source code in qml_essentials/ansaetze.py
class Circuit_9(Circuit):
    @staticmethod
    def n_params_per_layer(n_qubits: int) -> int:
        """
        Returns the number of parameters per layer for Circuit_9.

        The number of parameters is equal to the number of qubits.

        Parameters
        ----------
        n_qubits : int
            Number of qubits in the circuit

        Returns
        -------
        int
            Number of parameters required for one layer of the circuit
        """
        return n_qubits

    @staticmethod
    def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
        """
        No controlled rotation gates available. Always None.

        Parameters
        ----------
        n_qubits : int
            Number of qubits in the circuit

        Returns
        -------
        Optional[np.ndarray]
            List of all controlled indices, or None if the circuit does not
            contain controlled rotation gates.
        """
        return None

    @staticmethod
    def build(w: np.ndarray, n_qubits: int, noise_params=None):
        """
        Creates a Circuit9 ansatz.

        Length of flattened vector must be n_qubits

        Parameters
        ----------
        w : np.ndarray
            Weight vector of size n_qubits
        n_qubits : int
            Number of qubits
        noise_params : Optional[Dict[str, float]], optional
            Dictionary of noise parameters to apply to the gates
        """
        w_idx = 0
        for q in range(n_qubits):
            Gates.H(wires=q, noise_params=noise_params)

        if n_qubits > 1:
            for q in range(n_qubits - 1):
                Gates.CZ(
                    wires=[n_qubits - q - 2, n_qubits - q - 1],
                    noise_params=noise_params,
                )

        for q in range(n_qubits):
            Gates.RX(w[w_idx], wires=q, noise_params=noise_params)
            w_idx += 1

build(w, n_qubits, noise_params=None) staticmethod #

Creates a Circuit9 ansatz.

Length of flattened vector must be n_qubits

Parameters#

w : np.ndarray Weight vector of size n_qubits n_qubits : int Number of qubits noise_params : Optional[Dict[str, float]], optional Dictionary of noise parameters to apply to the gates

Source code in qml_essentials/ansaetze.py
@staticmethod
def build(w: np.ndarray, n_qubits: int, noise_params=None):
    """
    Creates a Circuit9 ansatz.

    Length of flattened vector must be n_qubits

    Parameters
    ----------
    w : np.ndarray
        Weight vector of size n_qubits
    n_qubits : int
        Number of qubits
    noise_params : Optional[Dict[str, float]], optional
        Dictionary of noise parameters to apply to the gates
    """
    w_idx = 0
    for q in range(n_qubits):
        Gates.H(wires=q, noise_params=noise_params)

    if n_qubits > 1:
        for q in range(n_qubits - 1):
            Gates.CZ(
                wires=[n_qubits - q - 2, n_qubits - q - 1],
                noise_params=noise_params,
            )

    for q in range(n_qubits):
        Gates.RX(w[w_idx], wires=q, noise_params=noise_params)
        w_idx += 1

get_control_indices(n_qubits) staticmethod #

No controlled rotation gates available. Always None.

Parameters#

n_qubits : int Number of qubits in the circuit

Returns#

Optional[np.ndarray] List of all controlled indices, or None if the circuit does not contain controlled rotation gates.

Source code in qml_essentials/ansaetze.py
@staticmethod
def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
    """
    No controlled rotation gates available. Always None.

    Parameters
    ----------
    n_qubits : int
        Number of qubits in the circuit

    Returns
    -------
    Optional[np.ndarray]
        List of all controlled indices, or None if the circuit does not
        contain controlled rotation gates.
    """
    return None

n_params_per_layer(n_qubits) staticmethod #

Returns the number of parameters per layer for Circuit_9.

The number of parameters is equal to the number of qubits.

Parameters#

n_qubits : int Number of qubits in the circuit

Returns#

int Number of parameters required for one layer of the circuit

Source code in qml_essentials/ansaetze.py
@staticmethod
def n_params_per_layer(n_qubits: int) -> int:
    """
    Returns the number of parameters per layer for Circuit_9.

    The number of parameters is equal to the number of qubits.

    Parameters
    ----------
    n_qubits : int
        Number of qubits in the circuit

    Returns
    -------
    int
        Number of parameters required for one layer of the circuit
    """
    return n_qubits

Hardware_Efficient #

Bases: Circuit

Source code in qml_essentials/ansaetze.py
class Hardware_Efficient(Circuit):
    @staticmethod
    def n_params_per_layer(n_qubits: int) -> int:
        """
        Returns the number of parameters per layer for the
        Hardware Efficient Ansatz.

        The number of parameters is 3 times the number of qubits when there
        is more than one qubit, as each qubit contributes 3 parameters.
        If the number of qubits is less than 2, a warning is logged since
        no entanglement is possible, and a fixed number of 2 parameters is used.

        Parameters
        ----------
        n_qubits : int
            Number of qubits in the circuit

        Returns
        -------
        int
            Number of parameters required for one layer of the circuit
        """
        if n_qubits < 2:
            log.warning("Number of Qubits < 2, no entanglement available")
        return n_qubits * 3

    @staticmethod
    def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
        """
        No controlled rotation gates available. Always None.

        Parameters
        ----------
        n_qubits : int
            Number of qubits in the circuit

        Returns
        -------
        Optional[np.ndarray]
            List of all controlled indices, or None if the circuit does not
            contain controlled rotation gates.
        """
        return None

    @staticmethod
    def build(w: np.ndarray, n_qubits: int, noise_params=None):
        """
        Creates a Hardware-Efficient ansatz, as proposed in
        https://arxiv.org/pdf/2309.03279

        Parameters
        ----------
        w : np.ndarray
            Weight vector of size n_qubits*3
        n_qubits : int
            Number of qubits
        noise_params : Optional[Dict[str, float]], optional
            Dictionary of noise parameters to apply to the gates
        """
        w_idx = 0
        for q in range(n_qubits):
            Gates.RY(w[w_idx], wires=q, noise_params=noise_params)
            w_idx += 1
            Gates.RZ(w[w_idx], wires=q, noise_params=noise_params)
            w_idx += 1
            Gates.RY(w[w_idx], wires=q, noise_params=noise_params)
            w_idx += 1

        if n_qubits > 1:
            for q in range(n_qubits // 2):
                Gates.CX(wires=[(2 * q), (2 * q + 1)], noise_params=noise_params)
            for q in range((n_qubits - 1) // 2):
                Gates.CX(
                    wires=[(2 * q + 1), (2 * q + 2)], noise_params=noise_params
                )
            if n_qubits > 2:
                Gates.CX(wires=[(n_qubits - 1), 0], noise_params=noise_params)

build(w, n_qubits, noise_params=None) staticmethod #

Creates a Hardware-Efficient ansatz, as proposed in https://arxiv.org/pdf/2309.03279

Parameters#

w : np.ndarray Weight vector of size n_qubits*3 n_qubits : int Number of qubits noise_params : Optional[Dict[str, float]], optional Dictionary of noise parameters to apply to the gates

Source code in qml_essentials/ansaetze.py
@staticmethod
def build(w: np.ndarray, n_qubits: int, noise_params=None):
    """
    Creates a Hardware-Efficient ansatz, as proposed in
    https://arxiv.org/pdf/2309.03279

    Parameters
    ----------
    w : np.ndarray
        Weight vector of size n_qubits*3
    n_qubits : int
        Number of qubits
    noise_params : Optional[Dict[str, float]], optional
        Dictionary of noise parameters to apply to the gates
    """
    w_idx = 0
    for q in range(n_qubits):
        Gates.RY(w[w_idx], wires=q, noise_params=noise_params)
        w_idx += 1
        Gates.RZ(w[w_idx], wires=q, noise_params=noise_params)
        w_idx += 1
        Gates.RY(w[w_idx], wires=q, noise_params=noise_params)
        w_idx += 1

    if n_qubits > 1:
        for q in range(n_qubits // 2):
            Gates.CX(wires=[(2 * q), (2 * q + 1)], noise_params=noise_params)
        for q in range((n_qubits - 1) // 2):
            Gates.CX(
                wires=[(2 * q + 1), (2 * q + 2)], noise_params=noise_params
            )
        if n_qubits > 2:
            Gates.CX(wires=[(n_qubits - 1), 0], noise_params=noise_params)

get_control_indices(n_qubits) staticmethod #

No controlled rotation gates available. Always None.

Parameters#

n_qubits : int Number of qubits in the circuit

Returns#

Optional[np.ndarray] List of all controlled indices, or None if the circuit does not contain controlled rotation gates.

Source code in qml_essentials/ansaetze.py
@staticmethod
def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
    """
    No controlled rotation gates available. Always None.

    Parameters
    ----------
    n_qubits : int
        Number of qubits in the circuit

    Returns
    -------
    Optional[np.ndarray]
        List of all controlled indices, or None if the circuit does not
        contain controlled rotation gates.
    """
    return None

n_params_per_layer(n_qubits) staticmethod #

Returns the number of parameters per layer for the Hardware Efficient Ansatz.

The number of parameters is 3 times the number of qubits when there is more than one qubit, as each qubit contributes 3 parameters. If the number of qubits is less than 2, a warning is logged since no entanglement is possible, and a fixed number of 2 parameters is used.

Parameters#

n_qubits : int Number of qubits in the circuit

Returns#

int Number of parameters required for one layer of the circuit

Source code in qml_essentials/ansaetze.py
@staticmethod
def n_params_per_layer(n_qubits: int) -> int:
    """
    Returns the number of parameters per layer for the
    Hardware Efficient Ansatz.

    The number of parameters is 3 times the number of qubits when there
    is more than one qubit, as each qubit contributes 3 parameters.
    If the number of qubits is less than 2, a warning is logged since
    no entanglement is possible, and a fixed number of 2 parameters is used.

    Parameters
    ----------
    n_qubits : int
        Number of qubits in the circuit

    Returns
    -------
    int
        Number of parameters required for one layer of the circuit
    """
    if n_qubits < 2:
        log.warning("Number of Qubits < 2, no entanglement available")
    return n_qubits * 3

No_Entangling #

Bases: Circuit

Source code in qml_essentials/ansaetze.py
class No_Entangling(Circuit):
    @staticmethod
    def n_params_per_layer(n_qubits: int) -> int:
        """
        Returns the number of parameters per layer for the NoEntangling ansatz.

        The number of parameters is calculated as n_qubits*3.

        Parameters
        ----------
        n_qubits : int
            Number of qubits in the circuit

        Returns
        -------
        int
            Number of parameters per layer
        """
        return n_qubits * 3

    @staticmethod
    def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
        """
        No controlled rotation gates available. Always None.

        Parameters
        ----------
        n_qubits : int
            Number of qubits in the circuit

        Returns
        -------
        Optional[np.ndarray]
            List of all controlled indices, or None if the circuit does not
            contain controlled rotation gates.
        """
        return None

    @staticmethod
    def build(w: np.ndarray, n_qubits: int, noise_params=None):
        """
        Creates a circuit without entangling, but with U3 gates on all qubits

        Length of flattened vector must be n_qubits*3

        Parameters
        ----------
        w : np.ndarray
            Weight vector of size n_qubits*3
        n_qubits : int
            Number of qubits
        noise_params : Optional[Dict[str, float]], optional
            Dictionary of noise parameters to apply to the gates
        """
        w_idx = 0
        for q in range(n_qubits):
            Gates.Rot(
                w[w_idx],
                w[w_idx + 1],
                w[w_idx + 2],
                wires=q,
                noise_params=noise_params,
            )
            w_idx += 3

build(w, n_qubits, noise_params=None) staticmethod #

Creates a circuit without entangling, but with U3 gates on all qubits

Length of flattened vector must be n_qubits*3

Parameters#

w : np.ndarray Weight vector of size n_qubits*3 n_qubits : int Number of qubits noise_params : Optional[Dict[str, float]], optional Dictionary of noise parameters to apply to the gates

Source code in qml_essentials/ansaetze.py
@staticmethod
def build(w: np.ndarray, n_qubits: int, noise_params=None):
    """
    Creates a circuit without entangling, but with U3 gates on all qubits

    Length of flattened vector must be n_qubits*3

    Parameters
    ----------
    w : np.ndarray
        Weight vector of size n_qubits*3
    n_qubits : int
        Number of qubits
    noise_params : Optional[Dict[str, float]], optional
        Dictionary of noise parameters to apply to the gates
    """
    w_idx = 0
    for q in range(n_qubits):
        Gates.Rot(
            w[w_idx],
            w[w_idx + 1],
            w[w_idx + 2],
            wires=q,
            noise_params=noise_params,
        )
        w_idx += 3

get_control_indices(n_qubits) staticmethod #

No controlled rotation gates available. Always None.

Parameters#

n_qubits : int Number of qubits in the circuit

Returns#

Optional[np.ndarray] List of all controlled indices, or None if the circuit does not contain controlled rotation gates.

Source code in qml_essentials/ansaetze.py
@staticmethod
def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
    """
    No controlled rotation gates available. Always None.

    Parameters
    ----------
    n_qubits : int
        Number of qubits in the circuit

    Returns
    -------
    Optional[np.ndarray]
        List of all controlled indices, or None if the circuit does not
        contain controlled rotation gates.
    """
    return None

n_params_per_layer(n_qubits) staticmethod #

Returns the number of parameters per layer for the NoEntangling ansatz.

The number of parameters is calculated as n_qubits*3.

Parameters#

n_qubits : int Number of qubits in the circuit

Returns#

int Number of parameters per layer

Source code in qml_essentials/ansaetze.py
@staticmethod
def n_params_per_layer(n_qubits: int) -> int:
    """
    Returns the number of parameters per layer for the NoEntangling ansatz.

    The number of parameters is calculated as n_qubits*3.

    Parameters
    ----------
    n_qubits : int
        Number of qubits in the circuit

    Returns
    -------
    int
        Number of parameters per layer
    """
    return n_qubits * 3

Strongly_Entangling #

Bases: Circuit

Source code in qml_essentials/ansaetze.py
class Strongly_Entangling(Circuit):
    @staticmethod
    def n_params_per_layer(n_qubits: int) -> int:
        """
        Returns the number of parameters per layer for the
        Strongly Entangling ansatz.

        The number of parameters is calculated as n_qubits*6.

        Parameters
        ----------
        n_qubits : int
            Number of qubits in the circuit

        Returns
        -------
        int
            Number of parameters per layer
        """
        if n_qubits < 2:
            log.warning("Number of Qubits < 2, no entanglement available")
        return n_qubits * 6

    @staticmethod
    def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
        """
        No controlled rotation gates available. Always None.

        Parameters
        ----------
        n_qubits : int
            Number of qubits in the circuit

        Returns
        -------
        Optional[np.ndarray]
            List of all controlled indices, or None if the circuit does not
            contain controlled rotation gates.
        """
        return None

    @staticmethod
    def build(w: np.ndarray, n_qubits: int, noise_params=None) -> None:
        """
        Creates a Strongly Entangling ansatz.

        Length of flattened vector must be n_qubits*6

        Parameters
        ----------
        w : np.ndarray
            Weight vector of size n_qubits*6
        n_qubits : int
            Number of qubits
        noise_params : Optional[Dict[str, float]], optional
            Dictionary of noise parameters to apply to the gates
        """
        w_idx = 0
        for q in range(n_qubits):
            Gates.Rot(
                w[w_idx],
                w[w_idx + 1],
                w[w_idx + 2],
                wires=q,
                noise_params=noise_params,
            )
            w_idx += 3

        if n_qubits > 1:
            for q in range(n_qubits):
                Gates.CX(wires=[q, (q + 1) % n_qubits], noise_params=noise_params)

        for q in range(n_qubits):
            Gates.Rot(
                w[w_idx],
                w[w_idx + 1],
                w[w_idx + 2],
                wires=q,
                noise_params=noise_params,
            )
            w_idx += 3

        if n_qubits > 1:
            for q in range(n_qubits):
                Gates.CX(
                    wires=[q, (q + n_qubits // 2) % n_qubits],
                    noise_params=noise_params,
                )

build(w, n_qubits, noise_params=None) staticmethod #

Creates a Strongly Entangling ansatz.

Length of flattened vector must be n_qubits*6

Parameters#

w : np.ndarray Weight vector of size n_qubits*6 n_qubits : int Number of qubits noise_params : Optional[Dict[str, float]], optional Dictionary of noise parameters to apply to the gates

Source code in qml_essentials/ansaetze.py
@staticmethod
def build(w: np.ndarray, n_qubits: int, noise_params=None) -> None:
    """
    Creates a Strongly Entangling ansatz.

    Length of flattened vector must be n_qubits*6

    Parameters
    ----------
    w : np.ndarray
        Weight vector of size n_qubits*6
    n_qubits : int
        Number of qubits
    noise_params : Optional[Dict[str, float]], optional
        Dictionary of noise parameters to apply to the gates
    """
    w_idx = 0
    for q in range(n_qubits):
        Gates.Rot(
            w[w_idx],
            w[w_idx + 1],
            w[w_idx + 2],
            wires=q,
            noise_params=noise_params,
        )
        w_idx += 3

    if n_qubits > 1:
        for q in range(n_qubits):
            Gates.CX(wires=[q, (q + 1) % n_qubits], noise_params=noise_params)

    for q in range(n_qubits):
        Gates.Rot(
            w[w_idx],
            w[w_idx + 1],
            w[w_idx + 2],
            wires=q,
            noise_params=noise_params,
        )
        w_idx += 3

    if n_qubits > 1:
        for q in range(n_qubits):
            Gates.CX(
                wires=[q, (q + n_qubits // 2) % n_qubits],
                noise_params=noise_params,
            )

get_control_indices(n_qubits) staticmethod #

No controlled rotation gates available. Always None.

Parameters#

n_qubits : int Number of qubits in the circuit

Returns#

Optional[np.ndarray] List of all controlled indices, or None if the circuit does not contain controlled rotation gates.

Source code in qml_essentials/ansaetze.py
@staticmethod
def get_control_indices(n_qubits: int) -> Optional[np.ndarray]:
    """
    No controlled rotation gates available. Always None.

    Parameters
    ----------
    n_qubits : int
        Number of qubits in the circuit

    Returns
    -------
    Optional[np.ndarray]
        List of all controlled indices, or None if the circuit does not
        contain controlled rotation gates.
    """
    return None

n_params_per_layer(n_qubits) staticmethod #

Returns the number of parameters per layer for the Strongly Entangling ansatz.

The number of parameters is calculated as n_qubits*6.

Parameters#

n_qubits : int Number of qubits in the circuit

Returns#

int Number of parameters per layer

Source code in qml_essentials/ansaetze.py
@staticmethod
def n_params_per_layer(n_qubits: int) -> int:
    """
    Returns the number of parameters per layer for the
    Strongly Entangling ansatz.

    The number of parameters is calculated as n_qubits*6.

    Parameters
    ----------
    n_qubits : int
        Number of qubits in the circuit

    Returns
    -------
    int
        Number of parameters per layer
    """
    if n_qubits < 2:
        log.warning("Number of Qubits < 2, no entanglement available")
    return n_qubits * 6

Gates#

from qml_essentials.ansaetze import Gates
Source code in qml_essentials/ansaetze.py
class Gates:
    rng = np.random.default_rng()

    @staticmethod
    def init_rng(seed: int):
        """
        Initializes the random number generator with the given seed.

        Parameters
        ----------
        seed : int
            The seed for the random number generator.
        """
        Gates.rng = np.random.default_rng(seed)

    @staticmethod
    def Noise(
        wires: Union[int, List[int]], noise_params: Optional[Dict[str, float]] = None
    ) -> None:
        """
        Applies noise to the given wires.

        Parameters
        ----------
        wires : Union[int, List[int]]
            The wire(s) to apply the noise to.
        noise_params : Optional[Dict[str, float]]
            A dictionary of noise parameters. The following noise gates are
            supported:
           -BitFlip: Applies a bit flip error to the given wires.
           -PhaseFlip: Applies a phase flip error to the given wires.
           -Depolarizing: Applies a depolarizing channel error to the
              given wires.

            All parameters are optional and default to 0.0 if not provided.
        """
        if noise_params is not None:
            if isinstance(wires, int):
                wires = [wires]  # single qubit gate
            # iterate for multi qubit gates
            for wire in wires:
                qml.BitFlip(noise_params.get("BitFlip", 0.0), wires=wire)
                qml.PhaseFlip(noise_params.get("PhaseFlip", 0.0), wires=wire)
                qml.DepolarizingChannel(
                    noise_params.get("Depolarizing", 0.0), wires=wire
                )

    @staticmethod
    def GateError(
        w: np.ndarray, noise_params: Optional[Dict[str, float]] = None
    ) -> np.ndarray:
        """
        Applies a gate error to the given rotation angle(s).

        Parameters
        ----------
        w : np.ndarray
            The rotation angle(s) in radians.
        noise_params : Optional[Dict[str, float]]
            A dictionary of noise parameters. The following noise gates are
            supported:
           -GateError: Applies a normal distribution error to the rotation
            angle(s). The standard deviation of the noise is specified by
            the "GateError" key in the dictionary.

            All parameters are optional and default to 0.0 if not provided.

        Returns
        -------
        np.ndarray
            The modified rotation angle(s) after applying the gate error.
        """
        if noise_params is not None:
            w += Gates.rng.normal(0, noise_params["GateError"], w.shape)
        return w

    @staticmethod
    def Rot(phi, theta, omega, wires, noise_params=None):
        """
        Applies a rotation gate to the given wires and adds `Noise`

        Parameters
        ----------
        phi : float
            The first rotation angle in radians.
        theta : float
            The second rotation angle in radians.
        omega : float
            The third rotation angle in radians.
        wires : Union[int, List[int]]
            The wire(s) to apply the rotation gate to.
        noise_params : Optional[Dict[str, float]]
            A dictionary of noise parameters. The following noise gates are
            supported:
           -BitFlip: Applies a bit flip error to the given wires.
           -PhaseFlip: Applies a phase flip error to the given wires.
           -Depolarizing: Applies a depolarizing channel error to the
              given wires.

            All parameters are optional and default to 0.0 if not provided.
        """
        if noise_params is not None and "GateError" in noise_params:
            phi += Gates.rng.normal(0, noise_params["GateError"])
            theta += Gates.rng.normal(0, noise_params["GateError"])
            omega += Gates.rng.normal(0, noise_params["GateError"])
        qml.Rot(phi, theta, omega, wires=wires)
        Gates.Noise(wires, noise_params)

    @staticmethod
    def RX(w, wires, noise_params=None):
        """
        Applies a rotation around the X axis to the given wires and adds `Noise`

        Parameters
        ----------
        w : float
            The rotation angle in radians.
        wires : Union[int, List[int]]
            The wire(s) to apply the rotation gate to.
        noise_params : Optional[Dict[str, float]]
            A dictionary of noise parameters. The following noise gates are
            supported:
           -BitFlip: Applies a bit flip error to the given wires.
           -PhaseFlip: Applies a phase flip error to the given wires.
           -Depolarizing: Applies a depolarizing channel error to the
              given wires.

            All parameters are optional and default to 0.0 if not provided.
        """
        qml.RX(w, wires=wires)
        Gates.Noise(wires, noise_params)

    @staticmethod
    def RY(w, wires, noise_params=None):
        """
        Applies a rotation around the Y axis to the given wires and adds `Noise`

        Parameters
        ----------
        w : float
            The rotation angle in radians.
        wires : Union[int, List[int]]
            The wire(s) to apply the rotation gate to.
        noise_params : Optional[Dict[str, float]]
            A dictionary of noise parameters. The following noise gates are
            supported:
           -BitFlip: Applies a bit flip error to the given wires.
           -PhaseFlip: Applies a phase flip error to the given wires.
           -Depolarizing: Applies a depolarizing channel error to the
            given wires.

            All parameters are optional and default to 0.0 if not provided.
        """
        w = Gates.GateError(w, noise_params)
        qml.RY(w, wires=wires)
        Gates.Noise(wires, noise_params)

    @staticmethod
    def RZ(w, wires, noise_params=None):
        """
        Applies a rotation around the Z axis to the given wires and adds `Noise`

        Parameters
        ----------
        w : float
            The rotation angle in radians.
        wires : Union[int, List[int]]
            The wire(s) to apply the rotation gate to.
        noise_params : Optional[Dict[str, float]]
            A dictionary of noise parameters. The following noise gates are
            supported:
           -BitFlip: Applies a bit flip error to the given wires.
           -PhaseFlip: Applies a phase flip error to the given wires.
           -Depolarizing: Applies a depolarizing channel error to the
              given wires.

            All parameters are optional and default to 0.0 if not provided.
        """
        qml.RZ(w, wires=wires)
        Gates.Noise(wires, noise_params)

    @staticmethod
    def CRX(w, wires, noise_params=None):
        """
        Applies a controlled rotation around the X axis to the given wires
        and adds `Noise`

        Parameters
        ----------
        w : float
            The rotation angle in radians.
        wires : Union[int, List[int]]
            The wire(s) to apply the controlled rotation gate to.
        noise_params : Optional[Dict[str, float]]
            A dictionary of noise parameters. The following noise gates are
            supported:
           -BitFlip: Applies a bit flip error to the given wires.
           -PhaseFlip: Applies a phase flip error to the given wires.
           -Depolarizing: Applies a depolarizing channel error to the
              given wires.

            All parameters are optional and default to 0.0 if not provided.
        """
        w = Gates.GateError(w, noise_params)
        qml.CRX(w, wires=wires)
        Gates.Noise(wires, noise_params)

    @staticmethod
    def CRY(w, wires, noise_params=None):
        """
        Applies a controlled rotation around the Y axis to the given wires
        and adds `Noise`

        Parameters
        ----------
        w : float
            The rotation angle in radians.
        wires : Union[int, List[int]]
            The wire(s) to apply the controlled rotation gate to.
        noise_params : Optional[Dict[str, float]]
            A dictionary of noise parameters. The following noise gates are
            supported:
           -BitFlip: Applies a bit flip error to the given wires.
           -PhaseFlip: Applies a phase flip error to the given wires.
           -Depolarizing: Applies a depolarizing channel error to the
              given wires.

            All parameters are optional and default to 0.0 if not provided.
        """
        w = Gates.GateError(w, noise_params)
        qml.CRY(w, wires=wires)
        Gates.Noise(wires, noise_params)

    @staticmethod
    def CRZ(w, wires, noise_params=None):
        """
        Applies a controlled rotation around the Z axis to the given wires
        and adds `Noise`

        Parameters
        ----------
        w : float
            The rotation angle in radians.
        wires : Union[int, List[int]]
            The wire(s) to apply the controlled rotation gate to.
        noise_params : Optional[Dict[str, float]]
            A dictionary of noise parameters. The following noise gates are
            supported:
           -BitFlip: Applies a bit flip error to the given wires.
           -PhaseFlip: Applies a phase flip error to the given wires.
           -Depolarizing: Applies a depolarizing channel error to the
            given wires.

            All parameters are optional and default to 0.0 if not provided.
        """
        w = Gates.GateError(w, noise_params)
        qml.CRZ(w, wires=wires)
        Gates.Noise(wires, noise_params)

    @staticmethod
    def CX(wires, noise_params=None):
        """
        Applies a controlled NOT gate to the given wires and adds `Noise`

        Parameters
        ----------
        wires : Union[int, List[int]]
            The wire(s) to apply the controlled NOT gate to.
        noise_params : Optional[Dict[str, float]]
            A dictionary of noise parameters. The following noise gates are
            supported:
           -BitFlip: Applies a bit flip error to the given wires.
           -PhaseFlip: Applies a phase flip error to the given wires.
           -Depolarizing: Applies a depolarizing channel error to the
              given wires.

            All parameters are optional and default to 0.0 if not provided.
        """
        qml.CNOT(wires=wires)
        Gates.Noise(wires, noise_params)

    @staticmethod
    def CY(wires, noise_params=None):
        """
        Applies a controlled Y gate to the given wires and adds `Noise`

        Parameters
        ----------
        wires : Union[int, List[int]]
            The wire(s) to apply the controlled Y gate to.
        noise_params : Optional[Dict[str, float]]
            A dictionary of noise parameters. The following noise gates are
            supported:
           -BitFlip: Applies a bit flip error to the given wires.
           -PhaseFlip: Applies a phase flip error to the given wires.
           -Depolarizing: Applies a depolarizing channel error to the
              given wires.

            All parameters are optional and default to 0.0 if not provided.
        """
        qml.CY(wires=wires)
        Gates.Noise(wires, noise_params)

    @staticmethod
    def CZ(wires, noise_params=None):
        """
        Applies a controlled Z gate to the given wires and adds `Noise`

        Parameters
        ----------
        wires : Union[int, List[int]]
            The wire(s) to apply the controlled Z gate to.
        noise_params : Optional[Dict[str, float]]
            A dictionary of noise parameters. The following noise gates are
            supported:
           -BitFlip: Applies a bit flip error to the given wires.
           -PhaseFlip: Applies a phase flip error to the given wires.
           -Depolarizing: Applies a depolarizing channel error to the
              given wires.

            All parameters are optional and default to 0.0 if not provided.
        """
        qml.CZ(wires=wires)
        Gates.Noise(wires, noise_params)

    @staticmethod
    def H(wires, noise_params=None):
        """
        Applies a Hadamard gate to the given wires and adds `Noise`

        Parameters
        ----------
        wires : Union[int, List[int]]
            The wire(s) to apply the Hadamard gate to.
        noise_params : Optional[Dict[str, float]]
            A dictionary of noise parameters. The following noise gates are
            supported:
           -BitFlip: Applies a bit flip error to the given wires.
           -PhaseFlip: Applies a phase flip error to the given wires.
           -Depolarizing: Applies a depolarizing channel error to the
              given wires.

            All parameters are optional and default to 0.0 if not provided.
        """
        qml.Hadamard(wires=wires)
        Gates.Noise(wires, noise_params)

CRX(w, wires, noise_params=None) staticmethod #

Applies a controlled rotation around the X axis to the given wires and adds Noise

Parameters#

w : float The rotation angle in radians. wires : Union[int, List[int]] The wire(s) to apply the controlled rotation gate to. noise_params : Optional[Dict[str, float]] A dictionary of noise parameters. The following noise gates are supported: -BitFlip: Applies a bit flip error to the given wires. -PhaseFlip: Applies a phase flip error to the given wires. -Depolarizing: Applies a depolarizing channel error to the given wires.

All parameters are optional and default to 0.0 if not provided.
Source code in qml_essentials/ansaetze.py
@staticmethod
def CRX(w, wires, noise_params=None):
    """
    Applies a controlled rotation around the X axis to the given wires
    and adds `Noise`

    Parameters
    ----------
    w : float
        The rotation angle in radians.
    wires : Union[int, List[int]]
        The wire(s) to apply the controlled rotation gate to.
    noise_params : Optional[Dict[str, float]]
        A dictionary of noise parameters. The following noise gates are
        supported:
       -BitFlip: Applies a bit flip error to the given wires.
       -PhaseFlip: Applies a phase flip error to the given wires.
       -Depolarizing: Applies a depolarizing channel error to the
          given wires.

        All parameters are optional and default to 0.0 if not provided.
    """
    w = Gates.GateError(w, noise_params)
    qml.CRX(w, wires=wires)
    Gates.Noise(wires, noise_params)

CRY(w, wires, noise_params=None) staticmethod #

Applies a controlled rotation around the Y axis to the given wires and adds Noise

Parameters#

w : float The rotation angle in radians. wires : Union[int, List[int]] The wire(s) to apply the controlled rotation gate to. noise_params : Optional[Dict[str, float]] A dictionary of noise parameters. The following noise gates are supported: -BitFlip: Applies a bit flip error to the given wires. -PhaseFlip: Applies a phase flip error to the given wires. -Depolarizing: Applies a depolarizing channel error to the given wires.

All parameters are optional and default to 0.0 if not provided.
Source code in qml_essentials/ansaetze.py
@staticmethod
def CRY(w, wires, noise_params=None):
    """
    Applies a controlled rotation around the Y axis to the given wires
    and adds `Noise`

    Parameters
    ----------
    w : float
        The rotation angle in radians.
    wires : Union[int, List[int]]
        The wire(s) to apply the controlled rotation gate to.
    noise_params : Optional[Dict[str, float]]
        A dictionary of noise parameters. The following noise gates are
        supported:
       -BitFlip: Applies a bit flip error to the given wires.
       -PhaseFlip: Applies a phase flip error to the given wires.
       -Depolarizing: Applies a depolarizing channel error to the
          given wires.

        All parameters are optional and default to 0.0 if not provided.
    """
    w = Gates.GateError(w, noise_params)
    qml.CRY(w, wires=wires)
    Gates.Noise(wires, noise_params)

CRZ(w, wires, noise_params=None) staticmethod #

Applies a controlled rotation around the Z axis to the given wires and adds Noise

Parameters#

w : float The rotation angle in radians. wires : Union[int, List[int]] The wire(s) to apply the controlled rotation gate to. noise_params : Optional[Dict[str, float]] A dictionary of noise parameters. The following noise gates are supported: -BitFlip: Applies a bit flip error to the given wires. -PhaseFlip: Applies a phase flip error to the given wires. -Depolarizing: Applies a depolarizing channel error to the given wires.

All parameters are optional and default to 0.0 if not provided.
Source code in qml_essentials/ansaetze.py
@staticmethod
def CRZ(w, wires, noise_params=None):
    """
    Applies a controlled rotation around the Z axis to the given wires
    and adds `Noise`

    Parameters
    ----------
    w : float
        The rotation angle in radians.
    wires : Union[int, List[int]]
        The wire(s) to apply the controlled rotation gate to.
    noise_params : Optional[Dict[str, float]]
        A dictionary of noise parameters. The following noise gates are
        supported:
       -BitFlip: Applies a bit flip error to the given wires.
       -PhaseFlip: Applies a phase flip error to the given wires.
       -Depolarizing: Applies a depolarizing channel error to the
        given wires.

        All parameters are optional and default to 0.0 if not provided.
    """
    w = Gates.GateError(w, noise_params)
    qml.CRZ(w, wires=wires)
    Gates.Noise(wires, noise_params)

CX(wires, noise_params=None) staticmethod #

Applies a controlled NOT gate to the given wires and adds Noise

Parameters#

wires : Union[int, List[int]] The wire(s) to apply the controlled NOT gate to. noise_params : Optional[Dict[str, float]] A dictionary of noise parameters. The following noise gates are supported: -BitFlip: Applies a bit flip error to the given wires. -PhaseFlip: Applies a phase flip error to the given wires. -Depolarizing: Applies a depolarizing channel error to the given wires.

All parameters are optional and default to 0.0 if not provided.
Source code in qml_essentials/ansaetze.py
@staticmethod
def CX(wires, noise_params=None):
    """
    Applies a controlled NOT gate to the given wires and adds `Noise`

    Parameters
    ----------
    wires : Union[int, List[int]]
        The wire(s) to apply the controlled NOT gate to.
    noise_params : Optional[Dict[str, float]]
        A dictionary of noise parameters. The following noise gates are
        supported:
       -BitFlip: Applies a bit flip error to the given wires.
       -PhaseFlip: Applies a phase flip error to the given wires.
       -Depolarizing: Applies a depolarizing channel error to the
          given wires.

        All parameters are optional and default to 0.0 if not provided.
    """
    qml.CNOT(wires=wires)
    Gates.Noise(wires, noise_params)

CY(wires, noise_params=None) staticmethod #

Applies a controlled Y gate to the given wires and adds Noise

Parameters#

wires : Union[int, List[int]] The wire(s) to apply the controlled Y gate to. noise_params : Optional[Dict[str, float]] A dictionary of noise parameters. The following noise gates are supported: -BitFlip: Applies a bit flip error to the given wires. -PhaseFlip: Applies a phase flip error to the given wires. -Depolarizing: Applies a depolarizing channel error to the given wires.

All parameters are optional and default to 0.0 if not provided.
Source code in qml_essentials/ansaetze.py
@staticmethod
def CY(wires, noise_params=None):
    """
    Applies a controlled Y gate to the given wires and adds `Noise`

    Parameters
    ----------
    wires : Union[int, List[int]]
        The wire(s) to apply the controlled Y gate to.
    noise_params : Optional[Dict[str, float]]
        A dictionary of noise parameters. The following noise gates are
        supported:
       -BitFlip: Applies a bit flip error to the given wires.
       -PhaseFlip: Applies a phase flip error to the given wires.
       -Depolarizing: Applies a depolarizing channel error to the
          given wires.

        All parameters are optional and default to 0.0 if not provided.
    """
    qml.CY(wires=wires)
    Gates.Noise(wires, noise_params)

CZ(wires, noise_params=None) staticmethod #

Applies a controlled Z gate to the given wires and adds Noise

Parameters#

wires : Union[int, List[int]] The wire(s) to apply the controlled Z gate to. noise_params : Optional[Dict[str, float]] A dictionary of noise parameters. The following noise gates are supported: -BitFlip: Applies a bit flip error to the given wires. -PhaseFlip: Applies a phase flip error to the given wires. -Depolarizing: Applies a depolarizing channel error to the given wires.

All parameters are optional and default to 0.0 if not provided.
Source code in qml_essentials/ansaetze.py
@staticmethod
def CZ(wires, noise_params=None):
    """
    Applies a controlled Z gate to the given wires and adds `Noise`

    Parameters
    ----------
    wires : Union[int, List[int]]
        The wire(s) to apply the controlled Z gate to.
    noise_params : Optional[Dict[str, float]]
        A dictionary of noise parameters. The following noise gates are
        supported:
       -BitFlip: Applies a bit flip error to the given wires.
       -PhaseFlip: Applies a phase flip error to the given wires.
       -Depolarizing: Applies a depolarizing channel error to the
          given wires.

        All parameters are optional and default to 0.0 if not provided.
    """
    qml.CZ(wires=wires)
    Gates.Noise(wires, noise_params)

GateError(w, noise_params=None) staticmethod #

Applies a gate error to the given rotation angle(s).

Parameters#

w : np.ndarray The rotation angle(s) in radians. noise_params : Optional[Dict[str, float]] A dictionary of noise parameters. The following noise gates are supported: -GateError: Applies a normal distribution error to the rotation angle(s). The standard deviation of the noise is specified by the "GateError" key in the dictionary.

All parameters are optional and default to 0.0 if not provided.
Returns#

np.ndarray The modified rotation angle(s) after applying the gate error.

Source code in qml_essentials/ansaetze.py
@staticmethod
def GateError(
    w: np.ndarray, noise_params: Optional[Dict[str, float]] = None
) -> np.ndarray:
    """
    Applies a gate error to the given rotation angle(s).

    Parameters
    ----------
    w : np.ndarray
        The rotation angle(s) in radians.
    noise_params : Optional[Dict[str, float]]
        A dictionary of noise parameters. The following noise gates are
        supported:
       -GateError: Applies a normal distribution error to the rotation
        angle(s). The standard deviation of the noise is specified by
        the "GateError" key in the dictionary.

        All parameters are optional and default to 0.0 if not provided.

    Returns
    -------
    np.ndarray
        The modified rotation angle(s) after applying the gate error.
    """
    if noise_params is not None:
        w += Gates.rng.normal(0, noise_params["GateError"], w.shape)
    return w

H(wires, noise_params=None) staticmethod #

Applies a Hadamard gate to the given wires and adds Noise

Parameters#

wires : Union[int, List[int]] The wire(s) to apply the Hadamard gate to. noise_params : Optional[Dict[str, float]] A dictionary of noise parameters. The following noise gates are supported: -BitFlip: Applies a bit flip error to the given wires. -PhaseFlip: Applies a phase flip error to the given wires. -Depolarizing: Applies a depolarizing channel error to the given wires.

All parameters are optional and default to 0.0 if not provided.
Source code in qml_essentials/ansaetze.py
@staticmethod
def H(wires, noise_params=None):
    """
    Applies a Hadamard gate to the given wires and adds `Noise`

    Parameters
    ----------
    wires : Union[int, List[int]]
        The wire(s) to apply the Hadamard gate to.
    noise_params : Optional[Dict[str, float]]
        A dictionary of noise parameters. The following noise gates are
        supported:
       -BitFlip: Applies a bit flip error to the given wires.
       -PhaseFlip: Applies a phase flip error to the given wires.
       -Depolarizing: Applies a depolarizing channel error to the
          given wires.

        All parameters are optional and default to 0.0 if not provided.
    """
    qml.Hadamard(wires=wires)
    Gates.Noise(wires, noise_params)

Noise(wires, noise_params=None) staticmethod #

Applies noise to the given wires.

Parameters#

wires : Union[int, List[int]] The wire(s) to apply the noise to. noise_params : Optional[Dict[str, float]] A dictionary of noise parameters. The following noise gates are supported: -BitFlip: Applies a bit flip error to the given wires. -PhaseFlip: Applies a phase flip error to the given wires. -Depolarizing: Applies a depolarizing channel error to the given wires.

All parameters are optional and default to 0.0 if not provided.
Source code in qml_essentials/ansaetze.py
@staticmethod
def Noise(
    wires: Union[int, List[int]], noise_params: Optional[Dict[str, float]] = None
) -> None:
    """
    Applies noise to the given wires.

    Parameters
    ----------
    wires : Union[int, List[int]]
        The wire(s) to apply the noise to.
    noise_params : Optional[Dict[str, float]]
        A dictionary of noise parameters. The following noise gates are
        supported:
       -BitFlip: Applies a bit flip error to the given wires.
       -PhaseFlip: Applies a phase flip error to the given wires.
       -Depolarizing: Applies a depolarizing channel error to the
          given wires.

        All parameters are optional and default to 0.0 if not provided.
    """
    if noise_params is not None:
        if isinstance(wires, int):
            wires = [wires]  # single qubit gate
        # iterate for multi qubit gates
        for wire in wires:
            qml.BitFlip(noise_params.get("BitFlip", 0.0), wires=wire)
            qml.PhaseFlip(noise_params.get("PhaseFlip", 0.0), wires=wire)
            qml.DepolarizingChannel(
                noise_params.get("Depolarizing", 0.0), wires=wire
            )

RX(w, wires, noise_params=None) staticmethod #

Applies a rotation around the X axis to the given wires and adds Noise

Parameters#

w : float The rotation angle in radians. wires : Union[int, List[int]] The wire(s) to apply the rotation gate to. noise_params : Optional[Dict[str, float]] A dictionary of noise parameters. The following noise gates are supported: -BitFlip: Applies a bit flip error to the given wires. -PhaseFlip: Applies a phase flip error to the given wires. -Depolarizing: Applies a depolarizing channel error to the given wires.

All parameters are optional and default to 0.0 if not provided.
Source code in qml_essentials/ansaetze.py
@staticmethod
def RX(w, wires, noise_params=None):
    """
    Applies a rotation around the X axis to the given wires and adds `Noise`

    Parameters
    ----------
    w : float
        The rotation angle in radians.
    wires : Union[int, List[int]]
        The wire(s) to apply the rotation gate to.
    noise_params : Optional[Dict[str, float]]
        A dictionary of noise parameters. The following noise gates are
        supported:
       -BitFlip: Applies a bit flip error to the given wires.
       -PhaseFlip: Applies a phase flip error to the given wires.
       -Depolarizing: Applies a depolarizing channel error to the
          given wires.

        All parameters are optional and default to 0.0 if not provided.
    """
    qml.RX(w, wires=wires)
    Gates.Noise(wires, noise_params)

RY(w, wires, noise_params=None) staticmethod #

Applies a rotation around the Y axis to the given wires and adds Noise

Parameters#

w : float The rotation angle in radians. wires : Union[int, List[int]] The wire(s) to apply the rotation gate to. noise_params : Optional[Dict[str, float]] A dictionary of noise parameters. The following noise gates are supported: -BitFlip: Applies a bit flip error to the given wires. -PhaseFlip: Applies a phase flip error to the given wires. -Depolarizing: Applies a depolarizing channel error to the given wires.

All parameters are optional and default to 0.0 if not provided.
Source code in qml_essentials/ansaetze.py
@staticmethod
def RY(w, wires, noise_params=None):
    """
    Applies a rotation around the Y axis to the given wires and adds `Noise`

    Parameters
    ----------
    w : float
        The rotation angle in radians.
    wires : Union[int, List[int]]
        The wire(s) to apply the rotation gate to.
    noise_params : Optional[Dict[str, float]]
        A dictionary of noise parameters. The following noise gates are
        supported:
       -BitFlip: Applies a bit flip error to the given wires.
       -PhaseFlip: Applies a phase flip error to the given wires.
       -Depolarizing: Applies a depolarizing channel error to the
        given wires.

        All parameters are optional and default to 0.0 if not provided.
    """
    w = Gates.GateError(w, noise_params)
    qml.RY(w, wires=wires)
    Gates.Noise(wires, noise_params)

RZ(w, wires, noise_params=None) staticmethod #

Applies a rotation around the Z axis to the given wires and adds Noise

Parameters#

w : float The rotation angle in radians. wires : Union[int, List[int]] The wire(s) to apply the rotation gate to. noise_params : Optional[Dict[str, float]] A dictionary of noise parameters. The following noise gates are supported: -BitFlip: Applies a bit flip error to the given wires. -PhaseFlip: Applies a phase flip error to the given wires. -Depolarizing: Applies a depolarizing channel error to the given wires.

All parameters are optional and default to 0.0 if not provided.
Source code in qml_essentials/ansaetze.py
@staticmethod
def RZ(w, wires, noise_params=None):
    """
    Applies a rotation around the Z axis to the given wires and adds `Noise`

    Parameters
    ----------
    w : float
        The rotation angle in radians.
    wires : Union[int, List[int]]
        The wire(s) to apply the rotation gate to.
    noise_params : Optional[Dict[str, float]]
        A dictionary of noise parameters. The following noise gates are
        supported:
       -BitFlip: Applies a bit flip error to the given wires.
       -PhaseFlip: Applies a phase flip error to the given wires.
       -Depolarizing: Applies a depolarizing channel error to the
          given wires.

        All parameters are optional and default to 0.0 if not provided.
    """
    qml.RZ(w, wires=wires)
    Gates.Noise(wires, noise_params)

Rot(phi, theta, omega, wires, noise_params=None) staticmethod #

Applies a rotation gate to the given wires and adds Noise

Parameters#

phi : float The first rotation angle in radians. theta : float The second rotation angle in radians. omega : float The third rotation angle in radians. wires : Union[int, List[int]] The wire(s) to apply the rotation gate to. noise_params : Optional[Dict[str, float]] A dictionary of noise parameters. The following noise gates are supported: -BitFlip: Applies a bit flip error to the given wires. -PhaseFlip: Applies a phase flip error to the given wires. -Depolarizing: Applies a depolarizing channel error to the given wires.

All parameters are optional and default to 0.0 if not provided.
Source code in qml_essentials/ansaetze.py
@staticmethod
def Rot(phi, theta, omega, wires, noise_params=None):
    """
    Applies a rotation gate to the given wires and adds `Noise`

    Parameters
    ----------
    phi : float
        The first rotation angle in radians.
    theta : float
        The second rotation angle in radians.
    omega : float
        The third rotation angle in radians.
    wires : Union[int, List[int]]
        The wire(s) to apply the rotation gate to.
    noise_params : Optional[Dict[str, float]]
        A dictionary of noise parameters. The following noise gates are
        supported:
       -BitFlip: Applies a bit flip error to the given wires.
       -PhaseFlip: Applies a phase flip error to the given wires.
       -Depolarizing: Applies a depolarizing channel error to the
          given wires.

        All parameters are optional and default to 0.0 if not provided.
    """
    if noise_params is not None and "GateError" in noise_params:
        phi += Gates.rng.normal(0, noise_params["GateError"])
        theta += Gates.rng.normal(0, noise_params["GateError"])
        omega += Gates.rng.normal(0, noise_params["GateError"])
    qml.Rot(phi, theta, omega, wires=wires)
    Gates.Noise(wires, noise_params)

init_rng(seed) staticmethod #

Initializes the random number generator with the given seed.

Parameters#

seed : int The seed for the random number generator.

Source code in qml_essentials/ansaetze.py
@staticmethod
def init_rng(seed: int):
    """
    Initializes the random number generator with the given seed.

    Parameters
    ----------
    seed : int
        The seed for the random number generator.
    """
    Gates.rng = np.random.default_rng(seed)

Model#

from qml_essentials.model import Model

A quantum circuit model.

Source code in qml_essentials/model.py
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
class Model:
    """
    A quantum circuit model.
    """

    lightning_threshold = 12

    def __init__(
        self,
        n_qubits: int,
        n_layers: int,
        circuit_type: Union[str, Circuit],
        data_reupload: Union[bool, List[int]] = True,
        state_preparation: Union[str, Callable, List[str], List[Callable]] = None,
        encoding: Union[str, Callable, List[str], List[Callable]] = Gates.RX,
        initialization: str = "random",
        initialization_domain: List[float] = [0, 2 * np.pi],
        output_qubit: Union[List[int], int] = -1,
        shots: Optional[int] = None,
        random_seed: int = 1000,
        as_pauli_circuit: bool = False,
        remove_zero_encoding: bool = True,
        mp_threshold: int = -1,
    ) -> None:
        """
        Initialize the quantum circuit model.
        Parameters will have the shape [impl_n_layers, parameters_per_layer]
        where impl_n_layers is the number of layers provided and added by one
        depending if data_reupload is True and parameters_per_layer is given by
        the chosen ansatz.

        The model is initialized with the following parameters as defaults:
        - noise_params: None
        - execution_type: "expval"
        - shots: None

        Args:
            n_qubits (int): The number of qubits in the circuit.
            n_layers (int): The number of layers in the circuit.
            circuit_type (str, Circuit): The type of quantum circuit to use.
                If None, defaults to "no_ansatz".
            data_reupload (bool, optional): Whether to reupload data to the
                quantum device on each measurement. Defaults to True.
            encoding (Union[str, Callable, List[str], List[Callable]], optional):
                The unitary to use for encoding the input data. Can be a string
                (e.g. "RX") or a callable (e.g. qml.RX). Defaults to qml.RX.
                If input is multidimensional it is assumed to be a list of
                unitaries or a list of strings.
            initialization (str, optional): The strategy to initialize the parameters.
                Can be "random", "zeros", "zero-controlled", "pi", or "pi-controlled".
                Defaults to "random".
            output_qubit (List[int], int, optional): The index of the output
                qubit (or qubits). When set to -1 all qubits are measured, or a
                global measurement is conducted, depending on the execution
                type.
            shots (Optional[int], optional): The number of shots to use for
                the quantum device. Defaults to None.
            random_seed (int, optional): seed for the random number generator
                in initialization is "random" and for random noise parameters.
                Defaults to 1000.
            as_pauli_circuit (bool, optional): whether the circuit is
                transformed to a Pauli-Clifford circuit as described by Nemkov
                et al. (https://doi.org/10.1103/PhysRevA.108.032406), which is
                required for analytical Fourier coefficient computation.
                Defaults to False.
            remove_zero_encoding (bool, optional): whether to
                remove the zero encoding from the circuit. Defaults to True.
            mp_threshold (int, optional): threshold above which the parameter
                batch dimension is split across multiple processes.
                Defaults to -1.

        Returns:
            None
        """
        # Initialize default parameters needed for circuit evaluation
        self.noise_params: Optional[Dict[str, Union[float, Dict[str, float]]]] = None
        self.execution_type: Optional[str] = "expval"
        self.shots = shots
        self.remove_zero_encoding = remove_zero_encoding
        self.mp_threshold = mp_threshold

        if isinstance(output_qubit, list):
            assert (
                len(output_qubit) <= n_qubits
            ), f"Size of output_qubit {len(output_qubit)} cannot be\
            larger than number of qubits {n_qubits}."
        self.output_qubit: Union[List[int], int] = output_qubit

        # Copy the parameters
        self.n_qubits: int = n_qubits
        self.n_layers: int = n_layers

        # Process data reuploading strategy and set degree
        if not isinstance(data_reupload, bool):
            if not isinstance(data_reupload, np.ndarray):
                data_reupload = np.array(data_reupload)
            assert data_reupload.shape == (n_layers, n_qubits)
        else:
            if data_reupload:
                impl_n_layers: int = (
                    n_layers + 1
                )  # we need L+1 according to Schuld et al.
                data_reupload = np.ones((n_layers, n_qubits))
            else:
                impl_n_layers: int = n_layers
                data_reupload = np.zeros((n_layers, n_qubits))
                data_reupload[0][0] = 1

        self.degree = np.count_nonzero(data_reupload)
        self.data_reupload = data_reupload

        if self.degree > 1:
            impl_n_layers: int = n_layers + 1  # we need L+1 according to Schuld et al.
        else:
            impl_n_layers = n_layers

        # Initialize ansatz
        # only weak check for str. We trust the user to provide sth useful
        if isinstance(circuit_type, str):
            self.pqc: Callable[[Optional[np.ndarray], int], int] = getattr(
                Ansaetze, circuit_type or "No_Ansatz"
            )()
        else:
            self.pqc = circuit_type()

        # Initialize rng in Gates
        Gates.init_rng(random_seed)

        # Initialize state preparation
        # first check if we have a str, list or callable
        if isinstance(state_preparation, str):
            # if str, use the pennylane fct
            self._sp = [getattr(Gates, f"{state_preparation}")]
        elif isinstance(state_preparation, list):
            # if list, check if str or callable
            if isinstance(state_preparation[0], str):
                self._sp = [getattr(Gates, f"{sp}") for sp in state_preparation]
            else:
                self._sp = state_preparation
        elif state_preparation is None:
            self._sp = [lambda *args, **kwargs: None]
        else:
            # default to callable
            self._sp = [state_preparation]

        # Initialize encoding
        # first check if we have a str, list or callable
        if isinstance(encoding, str):
            # if str, use the pennylane fct
            self._enc = getattr(Gates, f"{encoding}")
        elif isinstance(encoding, list):
            # if list, check if str or callable
            if isinstance(encoding[0], str):
                self._enc = [getattr(Gates, f"{enc}") for enc in encoding]
            else:
                self._enc = encoding

            if len(self._enc) == 1:
                self._enc = self._enc[0]
        else:
            # default to callable
            self._enc = encoding

        # Number of possible inputs
        self.n_input_feat = len(encoding) if isinstance(encoding, List) else 1

        log.info(f"Using {circuit_type} circuit.")

        log.info(f"Number of implicit layers set to {impl_n_layers}.")
        # calculate the shape of the parameter vector here, we will re-use this in init.
        self._params_shape: Tuple[int, int] = (
            impl_n_layers,
            self.pqc.n_params_per_layer(self.n_qubits),
        )
        self.batch_shape = (1, 1)
        # this will also be re-used in the init method,
        # however, only if nothing is provided
        self._inialization_strategy = initialization
        self._initialization_domain = initialization_domain

        # ..here! where we only require a rng
        self.initialize_params(np.random.default_rng(random_seed))

        # Initialize two circuits, one with the default device and
        # one with the mixed device
        # which allows us to later route depending on the state_vector flag
        self.as_pauli_circuit = as_pauli_circuit

        self.circuit_mixed: qml.QNode = qml.QNode(
            self._circuit,
            qml.device("default.mixed", shots=self.shots, wires=self.n_qubits),
        )

    @property
    def as_pauli_circuit(self) -> bool:
        return self._as_pauli_circuit

    @as_pauli_circuit.setter
    def as_pauli_circuit(self, value: bool) -> None:
        self._as_pauli_circuit = value

        if self.n_qubits < self.lightning_threshold:
            device = "default.qubit"
        else:
            device = "lightning.qubit"
            self.mp_threshold = -1

        self.circuit: qml.QNode = qml.QNode(
            self._circuit,
            qml.device(
                device,
                shots=self.shots,
                wires=self.n_qubits,
            ),
            interface="autograd" if self.shots is not None else "auto",
            diff_method="parameter-shift" if self.shots is not None else "best",
        )

        if value:
            pauli_circuit_transform = qml.transform(
                PauliCircuit.from_parameterised_circuit
            )
            self.circuit = pauli_circuit_transform(self.circuit)

    @property
    def noise_params(self) -> Optional[Dict[str, Union[float, Dict[str, float]]]]:
        """
        Gets the noise parameters of the model.

        Returns:
            Optional[Dict[str, float]]: A dictionary of
            noise parameters or None if not set.
        """
        return self._noise_params

    @noise_params.setter
    def noise_params(
        self, kvs: Optional[Dict[str, Union[float, Dict[str, float]]]]
    ) -> None:
        """
        Sets the noise parameters of the model.

        Typically a "noise parameter" refers to the error probability.
        ThermalRelaxation is a special case, and supports a dict as value with
        structure:
            "ThermalRelaxation":
            {
                "t1": 2000, # relative t1 time.
                "t2": 1000, # relative t2 time
                "t_factor" 1: # relative gate time factor
            },

        Args:
            value (Optional[Dict[str, Union[float, Dict[str, float]]]]): A
            dictionary of noise parameters. If all values are 0.0, the noise
            parameters are set to None.

        Returns:
            None
        """
        # set to None if only zero values provided
        if kvs is not None and all(np == 0.0 for np in kvs.values()):
            kvs = None

        # set default values
        if kvs is not None:
            kvs.setdefault("BitFlip", 0.0)
            kvs.setdefault("PhaseFlip", 0.0)
            kvs.setdefault("Depolarizing", 0.0)
            kvs.setdefault("AmplitudeDamping", 0.0)
            kvs.setdefault("PhaseDamping", 0.0)
            kvs.setdefault("GateError", 0.0)
            kvs.setdefault("ThermalRelaxation", None)
            kvs.setdefault("StatePreparation", 0.0)
            kvs.setdefault("Measurement", 0.0)

            # check if there are any keys not supported
            for key in kvs.keys():
                if key not in [
                    "BitFlip",
                    "PhaseFlip",
                    "Depolarizing",
                    "AmplitudeDamping",
                    "PhaseDamping",
                    "GateError",
                    "ThermalRelaxation",
                    "StatePreparation",
                    "Measurement",
                ]:
                    warnings.warn(
                        f"Noise type {key} is not supported by this package",
                        UserWarning,
                    )

            # check valid params for thermal relaxation noise channel
            tr_params = kvs["ThermalRelaxation"]
            if isinstance(tr_params, dict):
                tr_params.setdefault("t1", 0.0)
                tr_params.setdefault("t2", 0.0)
                tr_params.setdefault("t_factor", 0.0)
                for k in tr_params.keys():
                    if k not in [
                        "t1",
                        "t2",
                        "t_factor",
                    ]:
                        warnings.warn(
                            f"Thermal Relaxation parameter {k} is not supported "
                            f"by this package",
                            UserWarning,
                        )
                if not all(tr_params.values()) or tr_params["t2"] > 2 * tr_params["t1"]:
                    warnings.warn(
                        "Received invalid values for Thermal Relaxation noise "
                        "parameter. Thermal relaxation is not applied!",
                        UserWarning,
                    )
                    kvs["ThermalRelaxation"] = 0.0

        self._noise_params = kvs

    @property
    def execution_type(self) -> str:
        """
        Gets the execution type of the model.

        Returns:
            str: The execution type, one of 'density', 'expval', or 'probs'.
        """
        return self._execution_type

    @execution_type.setter
    def execution_type(self, value: str) -> None:
        if value not in ["density", "state", "expval", "probs"]:
            raise ValueError(f"Invalid execution type: {value}.")

        if (value == "density" or value == "state") and self.output_qubit != -1:
            warnings.warn(
                f"{value} measurement does ignore output_qubit, which is "
                f"{self.output_qubit}.",
                UserWarning,
            )

        if value == "probs" and self.shots is None:
            warnings.warn(
                "Setting execution_type to probs without specifying shots.",
                UserWarning,
            )

        if value == "density" and self.shots is not None:
            warnings.warn(
                "Setting execution_type to density with specified shots.",
                UserWarning,
            )

        self._execution_type = value

    @property
    def shots(self) -> Optional[int]:
        """
        Gets the number of shots to use for the quantum device.

        Returns:
            Optional[int]: The number of shots.
        """
        return self._shots

    @shots.setter
    def shots(self, value: Optional[int]) -> None:
        """
        Sets the number of shots to use for the quantum device.

        Args:
            value (Optional[int]): The number of shots.
            If an integer less than or equal to 0 is provided, it is set to None.

        Returns:
            None
        """
        if type(value) is int and value <= 0:
            value = None
        self._shots = value

    def initialize_params(
        self,
        rng: np.random.Generator,
        repeat: int = None,
        initialization: str = None,
        initialization_domain: List[float] = None,
    ) -> None:
        """
        Initializes the parameters of the model.

        Args:
            rng: A random number generator to use for initialization.
            repeat: The number of times to repeat the parameters.
                If None, the number of layers is used.
            initialization: The strategy to use for parameter initialization.
                If None, the strategy specified in the constructor is used.
            initialization_domain: The domain to use for parameter initialization.
                If None, the domain specified in the constructor is used.

        Returns:
            None
        """
        params_shape = (
            self._params_shape if repeat is None else [*self._params_shape, repeat]
        )
        # use existing strategy if not specified
        initialization = initialization or self._inialization_strategy
        initialization_domain = initialization_domain or self._initialization_domain

        def set_control_params(params: np.ndarray, value: float) -> np.ndarray:
            indices = self.pqc.get_control_indices(self.n_qubits)
            if indices is None:
                warnings.warn(
                    f"Specified {initialization} but circuit\
                    does not contain controlled rotation gates.\
                    Parameters are intialized randomly.",
                    UserWarning,
                )
            else:
                params[:, indices[0] : indices[1] : indices[2]] = (
                    np.ones_like(params[:, indices[0] : indices[1] : indices[2]])
                    * value
                )
            return params

        if initialization == "random":
            self.params: np.ndarray = rng.uniform(
                *initialization_domain, params_shape, requires_grad=True
            )
        elif initialization == "zeros":
            self.params: np.ndarray = np.zeros(params_shape, requires_grad=True)
        elif initialization == "pi":
            self.params: np.ndarray = np.ones(params_shape, requires_grad=True) * np.pi
        elif initialization == "zero-controlled":
            self.params: np.ndarray = rng.uniform(
                *initialization_domain, params_shape, requires_grad=True
            )
            self.params = set_control_params(self.params, 0)
        elif initialization == "pi-controlled":
            self.params: np.ndarray = rng.uniform(
                *initialization_domain, params_shape, requires_grad=True
            )
            self.params = set_control_params(self.params, np.pi)
        else:
            raise Exception("Invalid initialization method")

        log.info(
            f"Initialized parameters with shape {self.params.shape}\
            using strategy {initialization}."
        )

    def _iec(
        self,
        inputs: np.ndarray,
        data_reupload: bool,
        enc: Union[Callable, List[Callable]],
        noise_params: Optional[Dict[str, Union[float, Dict[str, float]]]] = None,
    ) -> None:
        """
        Creates an AngleEncoding using RX gates

        Args:
            inputs (np.ndarray): length of vector must be 1, shape (1,)
            data_reupload (bool, optional): Whether to reupload the data
                for the IEC or not, default is True.

        Returns:
            None
        """
        # check for zero, because due to input validation, input cannot be none
        if self.remove_zero_encoding and not inputs.any():
            return

        # one dimensional encoding
        if inputs.shape[1] == 1:
            for q in range(self.n_qubits):
                if data_reupload[q]:
                    enc(inputs[:, 0], wires=q, noise_params=noise_params)
        # multi dimensional encoding
        else:
            for q in range(self.n_qubits):
                if data_reupload[q]:
                    for idx in range(inputs.shape[1]):
                        enc[idx](inputs[:, idx], wires=q, noise_params=noise_params)

    def _circuit(
        self,
        params: np.ndarray,
        inputs: np.ndarray,
    ) -> Union[float, np.ndarray]:
        """
        Creates a circuit with noise.

        Args:
            params (np.ndarray): weight vector of shape
                [n_layers, n_qubits*n_params_per_layer]
            inputs (np.ndarray): input vector of size 1
        Returns:
            Union[float, np.ndarray]: Expectation value of PauliZ(0)
                of the circuit if state_vector is False and expval is True,
                otherwise the density matrix of all qubits.
        """
        self._variational(params=params, inputs=inputs)
        return self._observable()

    def _variational(self, params, inputs):
        if self.noise_params is not None:
            self._apply_state_prep_noise()

        for q in range(self.n_qubits):
            for _sp in self._sp:
                _sp(wires=q, noise_params=self.noise_params)

        for layer in range(0, self.n_layers):
            self.pqc(params[layer], self.n_qubits, noise_params=self.noise_params)

            self._iec(
                inputs,
                data_reupload=self.data_reupload[layer],
                enc=self._enc,
                noise_params=self.noise_params,
            )

            if self.degree > 1:
                qml.Barrier(wires=list(range(self.n_qubits)), only_visual=True)

        if self.degree > 1:  # same check as in init
            self.pqc(params[-1], self.n_qubits, noise_params=self.noise_params)

        if self.noise_params is not None:
            self._apply_general_noise()

    def _observable(self):
        # run mixed simualtion and get density matrix
        if self.execution_type == "density":
            return qml.density_matrix(wires=list(range(self.n_qubits)))
        elif self.execution_type == "state":
            return qml.state()
        # run default simulation and get expectation value
        elif self.execution_type == "expval":
            # n-local measurement
            if self.output_qubit == -1:
                return [qml.expval(qml.PauliZ(q)) for q in range(self.n_qubits)]
            # local measurement(s)
            elif isinstance(self.output_qubit, int):
                return qml.expval(qml.PauliZ(self.output_qubit))
            # parity measurenment
            elif isinstance(self.output_qubit, list):
                obs = qml.PauliZ(self.output_qubit[0])
                for out_qubit in self.output_qubit[1:]:
                    obs = obs @ qml.PauliZ(out_qubit)
                return qml.expval(obs)
            else:
                raise ValueError(
                    f"Invalid parameter 'output_qubit': {self.output_qubit}.\
                        Must be int, list or -1."
                )
        # run default simulation and get probs
        elif self.execution_type == "probs":
            if self.output_qubit == -1:
                return qml.probs(wires=list(range(self.n_qubits)))
            else:
                return qml.probs(wires=self.output_qubit)
        else:
            raise ValueError(f"Invalid execution_type: {self.execution_type}.")

    def _apply_state_prep_noise(self) -> None:
        """
        Applies a state preparation error on each qubit according to the
        probability for StatePreparation provided in the noise_params.
        """
        sp = self.noise_params.get("StatePreparation", 0.0)
        for q in range(self.n_qubits):
            if sp > 0:
                qml.BitFlip(sp, wires=q)

    def _apply_general_noise(self) -> None:
        """
        Applies general types of noise the full circuit (in contrast to gate
        errors, applied directly at gate level, see Gates.Noise).

        Possible types of noise are:
            - AmplitudeDamping (specified through probability)
            - PhaseDamping (specified through probability)
            - ThermalRelaxation (specified through a dict, containing keys
                                 "t1", "t2", "t_factor")
            - Measurement (specified through probability)
        """
        amp_damp = self.noise_params.get("AmplitudeDamping", 0.0)
        phase_damp = self.noise_params.get("PhaseDamping", 0.0)
        thermal_relax = self.noise_params.get("ThermalRelaxation", 0.0)
        meas = self.noise_params.get("Measurement", 0.0)
        for q in range(self.n_qubits):
            if amp_damp > 0:
                qml.AmplitudeDamping(amp_damp, wires=q)
            if phase_damp > 0:
                qml.PhaseDamping(phase_damp, wires=q)
            if meas > 0:
                qml.BitFlip(meas, wires=q)
            if isinstance(thermal_relax, dict):
                t1 = thermal_relax["t1"]
                t2 = thermal_relax["t2"]
                t_factor = thermal_relax["t_factor"]
                circuit_depth = self.get_circuit_depth()
                tg = circuit_depth * t_factor
                qml.ThermalRelaxationError(1.0, t1, t2, tg, q)

    def draw(self, inputs=None, figure="text", *args, **kwargs):
        """
        Draws the quantum circuit using the specified visualization method.

        Args:
            inputs (Optional[np.ndarray]): Input vector for the circuit. If None,
                the default inputs are used.
            figure (str, optional): The type of figure to generate. Must be one of
                'text', 'mpl', or 'tikz'. Defaults to 'text'.
        Returns:
            Either a string, matplotlib figure or TikzFigure object (similar to string)
            depending on the chosen visualization.
        *args:
            Additional arguments to be passed to the visualization method.
        **kwargs:
            Additional keyword arguments to be passed to the visualization method.

        Raises:
            AssertionError: If the 'figure' argument is not one of the accepted values.
        """

        if not isinstance(self.circuit, qml.QNode):
            # TODO: throws strange argument error if not catched
            return ""

        assert figure in [
            "text",
            "mpl",
            "tikz",
        ], f"Invalid figure: {figure}. Must be 'text', 'mpl' or 'tikz'."

        inputs = self._inputs_validation(inputs)

        if figure == "mpl":
            result = qml.draw_mpl(self.circuit)(
                params=self.params, inputs=inputs, *args, **kwargs
            )
        elif figure == "tikz":
            result = QuanTikz.build(
                self.circuit, params=self.params, inputs=inputs, *args, **kwargs
            )
        else:
            result = qml.draw(self.circuit)(params=self.params, inputs=inputs)
        return result

    def __repr__(self) -> str:
        return self.draw(figure="text")

    def __str__(self) -> str:
        return self.draw(figure="text")

    def _params_validation(self, params) -> np.ndarray:
        """
        Sets the parameters when calling the quantum circuit

        Args:
            params (np.ndarray): The parameters used for the call
        """
        if params is None:
            params = self.params
        else:
            if numpy_boxes.ArrayBox == type(params):
                self.params = params._value
            else:
                self.params = params
        return params

    def _inputs_validation(
        self, inputs: Union[None, List, float, int, np.ndarray]
    ) -> np.ndarray:
        """
        Validate the inputs to be a 2D numpy array of shape (batch_size, n_inputs).

        Args:
            inputs (Union[None, List, float, int, np.ndarray]): The input to validate.

        Returns:
            np.ndarray: The validated input.
        """
        if inputs is None:
            # initialize to zero
            inputs = np.array([[0] * self.n_input_feat])
        elif isinstance(inputs, List):
            inputs = np.stack(inputs)
        elif isinstance(inputs, float) or isinstance(inputs, int):
            inputs = np.array([inputs])

        if len(inputs.shape) <= 1:
            if self.n_input_feat == 1:
                # add a batch dimension
                inputs = inputs.reshape(-1, 1)
            else:
                if inputs.shape[0] == self.n_input_feat:
                    inputs = inputs.reshape(1, -1)
                else:
                    inputs = inputs.reshape(-1, 1)
                    inputs = inputs.repeat(self.n_input_feat, axis=1)
                    warnings.warn(
                        f"Expected {self.n_input_feat} inputs, but {inputs.shape[0]} "
                        "was provided, replicating input for all input features.",
                        UserWarning,
                    )
        else:
            if inputs.shape[1] != self.n_input_feat:
                raise ValueError(
                    f"Wrong number of inputs provided. Expected {self.n_input_feat} "
                    f"inputs, but input has shape {inputs.shape}."
                )

        return inputs

    @staticmethod
    def _parallel_f(procnum, result, f, batch_size, params, inputs, batch_shape):
        """
        Helper function for parallelizing a function f over parameters.
        Sices the batch dimension based on the procnum and batch size.

        Args:
            procnum: The process number.
            result: The result array.
            f: The function to be parallelized.
            batch_size: The batch size.
            params: The parameters array.
            inputs: The inputs array.
        """
        min_idx = max(procnum * batch_size, 0)

        if batch_shape[0] > 1:
            max_idx = min((procnum + 1) * batch_size, inputs.shape[0])
            inputs = inputs[min_idx:max_idx]
        if batch_shape[1] > 1:
            max_idx = min((procnum + 1) * batch_size, params.shape[2])
            params = params[:, :, min_idx:max_idx]

        result[procnum] = f(params=params, inputs=inputs)

    def _mp_executor(self, f, params, inputs):
        """
        Execute a function f in parallel over parameters.

        Args:
            f: A function that takes two arguments, params and inputs,
                and returns a numpy array.
            params: A 3D numpy array of parameters where the first dimension is
                the layer index, the second dimension is the parameter index in
                the layer, and the third dimension is the sample index.
            inputs: A 2D numpy array of inputs where the first dimension is
                the sample index and the second dimension is the input feature index.

        Returns:
            A numpy array of the output of f applied to each batch of
            samples in params and inputs.
        """
        n_processes = 1
        # batches available?
        if params is not None and len(params.shape) > 2:
            # sufficiently large for MP?
            if self.mp_threshold > 0 and params.shape[2] > self.mp_threshold:
                n_processes = math.ceil(params.shape[2] / self.mp_threshold)

        # check if single process
        if n_processes == 1:
            result = f(params=params, inputs=inputs)
        else:
            log.info(f"Using {n_processes} processes")
            mpp = MultiprocessingPool(
                n_processes=n_processes,
                target=Model._parallel_f,
                batch_size=math.ceil(params.shape[2] / n_processes),
                f=f,
                params=params,
                inputs=inputs,
                batch_shape=self.batch_shape,
            )
            return_dict = mpp.spawn()
            result = [None] * len(return_dict)
            for k, v in return_dict.items():
                result[k] = v

            result = np.concat(result, axis=1 if self.execution_type == "expval" else 0)

        return result

    def _assimilate_batch(self, inputs, params):
        batch_shape = (
            inputs.shape[0],
            params.shape[2] if len(params.shape) == 3 else 1,
        )

        if (
            batch_shape[1] != 1
            and batch_shape[0] != batch_shape[1]
            and batch_shape[0] > 1
        ):
            # the following code does some dirty reshaping
            # TODO: optimize but be aware of the rabbit hole
            # key is to get the right "order" in which we repeat

            # [BI,D] -> [BPxBI,D]
            inputs = np.repeat(inputs, batch_shape[1], axis=0)

            # this is a tricky one, essentially we want to get
            # [L,Q,BP] -> [L,Q,BI,BP] -> [L,Q,BPxBI]
            params = np.repeat(
                params[:, :, np.newaxis, :], batch_shape[0], axis=2
            ).reshape([*params.shape[:-1], np.prod(batch_shape)])

        return inputs, params, batch_shape

    def __call__(
        self,
        params: Optional[np.ndarray] = None,
        inputs: Optional[np.ndarray] = None,
        noise_params: Optional[Dict[str, Union[float, Dict[str, float]]]] = None,
        cache: Optional[bool] = False,
        execution_type: Optional[str] = None,
        force_mean: bool = False,
    ) -> np.ndarray:
        """
        Perform a forward pass of the quantum circuit.

        Args:
            params (Optional[np.ndarray]): Weight vector of shape
                [n_layers, n_qubits*n_params_per_layer].
                If None, model internal parameters are used.
            inputs (Optional[np.ndarray]): Input vector of shape [1].
                If None, zeros are used.
            noise_params (Optional[Dict[str, float]], optional): The noise parameters.
                Defaults to None which results in the last
                set noise parameters being used.
            cache (Optional[bool], optional): Whether to cache the results.
                Defaults to False.
            execution_type (str, optional): The type of execution.
                Must be one of 'expval', 'density', or 'probs'.
                Defaults to None which results in the last set execution type
                being used.
            force_mean (bool, optional): Whether to average
                when performing n-local measurements.
                Defaults to False.

        Returns:
            np.ndarray: The output of the quantum circuit.
                The shape depends on the execution_type.
                - If execution_type is 'expval', returns an ndarray of shape
                    (1,) if output_qubit is -1, else (len(output_qubit),).
                - If execution_type is 'density', returns an ndarray
                    of shape (2**n_qubits, 2**n_qubits).
                - If execution_type is 'probs', returns an ndarray
                    of shape (2**n_qubits,) if output_qubit is -1, else
                    (2**len(output_qubit),).
        """
        # Call forward method which handles the actual caching etc.
        return self._forward(
            params=params,
            inputs=inputs,
            noise_params=noise_params,
            cache=cache,
            execution_type=execution_type,
            force_mean=force_mean,
        )

    def _forward(
        self,
        params: Optional[np.ndarray] = None,
        inputs: Optional[np.ndarray] = None,
        noise_params: Optional[Dict[str, Union[float, Dict[str, float]]]] = None,
        cache: Optional[bool] = False,
        execution_type: Optional[str] = None,
        force_mean: bool = False,
    ) -> np.ndarray:
        """
        Perform a forward pass of the quantum circuit.

        Args:
            params (Optional[np.ndarray]): Weight vector of shape
                [n_layers, n_qubits*n_params_per_layer].
                If None, model internal parameters are used.
            inputs (Optional[np.ndarray]): Input vector of shape [1].
                If None, zeros are used.
            noise_params (Optional[Dict[str, float]], optional): The noise parameters.
                Defaults to None which results in the last
                set noise parameters being used.
            cache (Optional[bool], optional): Whether to cache the results.
                Defaults to False.
            execution_type (str, optional): The type of execution.
                Must be one of 'expval', 'density', or 'probs'.
                Defaults to None which results in the last set execution type
                being used.
            force_mean (bool, optional): Whether to average
                when performing n-local measurements.
                Defaults to False.

        Returns:
            np.ndarray: The output of the quantum circuit.
                The shape depends on the execution_type.
                - If execution_type is 'expval', returns an ndarray of shape
                    (1,) if output_qubit is -1, else (len(output_qubit),).
                - If execution_type is 'density', returns an ndarray
                    of shape (2**n_qubits, 2**n_qubits).
                - If execution_type is 'probs', returns an ndarray
                    of shape (2**n_qubits,) if output_qubit is -1, else
                    (2**len(output_qubit),).

        Raises:
            NotImplementedError: If the number of shots is not None or if the
                expectation value is True.
        """
        # set the parameters as object attributes
        if noise_params is not None:
            self.noise_params = noise_params
        if execution_type is not None:
            self.execution_type = execution_type

        params = self._params_validation(params)
        inputs = self._inputs_validation(inputs)
        inputs, params, self.batch_shape = self._assimilate_batch(inputs, params)
        # the qasm representation contains the bound parameters,
        # thus it is ok to hash that
        hs = hashlib.md5(
            repr(
                {
                    "n_qubits": self.n_qubits,
                    "n_layers": self.n_layers,
                    "pqc": self.pqc.__class__.__name__,
                    "dru": self.data_reupload,
                    "params": self.params,  # use safe-params
                    "noise_params": self.noise_params,
                    "execution_type": self.execution_type,
                    "inputs": inputs,
                    "output_qubit": self.output_qubit,
                }
            ).encode("utf-8")
        ).hexdigest()

        result: Optional[np.ndarray] = None
        if cache:
            name: str = f"pqc_{hs}.npy"

            cache_folder: str = ".cache"
            if not os.path.exists(cache_folder):
                os.mkdir(cache_folder)

            file_path: str = os.path.join(cache_folder, name)

            if os.path.isfile(file_path):
                result = np.load(file_path)

        if result is None:
            # if density matrix requested or noise params used
            if self.execution_type == "density" or self.noise_params is not None:
                result = self._mp_executor(
                    f=self.circuit_mixed,
                    params=params,  # use arraybox params
                    inputs=inputs,
                )
            else:
                if not isinstance(self.circuit, qml.QNode):
                    result = self.circuit(
                        inputs=inputs,
                    )
                else:
                    result = self._mp_executor(
                        f=self.circuit,
                        params=params,  # use arraybox params
                        inputs=inputs,
                    )

        if isinstance(result, list):
            result = np.stack(result)

        if self.execution_type == "expval" and force_mean and self.output_qubit == -1:
            # exception for torch layer because it swaps batch and output dimension
            if not isinstance(self.circuit, qml.QNode):
                result = result.mean(axis=-1)
            else:
                result = result.mean(axis=0)
        elif self.execution_type == "probs" and force_mean and self.output_qubit == -1:
            # exception for torch layer because it swaps batch and output dimension
            if not isinstance(self.circuit, qml.QNode):
                result = result[..., -1].sum(axis=-1)
            else:
                result = result[1:, ...].sum(axis=0)

        if self.batch_shape[0] > 1 and self.batch_shape[1] > 1:
            result = result.reshape(-1, *self.batch_shape)

        result = result.squeeze()

        if cache:
            np.save(file_path, result)

        return result

    def get_specs(self, inputs: Optional[np.ndarray] = None) -> dict:
        """
        Get pennylane specs for the model.

        Args:
            inputs (Optional[np.ndarray]): The inputs, with which to call the
                circuit. Defaults to None.

        Returns:
            dict: Dictionary of specs. The key "resources" contains information
                about the circuit size and gate statistics.
        """
        inputs = self._inputs_validation(inputs)
        spec_model = deepcopy(self)
        spec_model.noise_params = None  # remove noise
        return qml.specs(spec_model.circuit)(self.params, inputs)

    def get_circuit_depth(self, inputs: Optional[np.ndarray] = None) -> int:
        """
        Obtain circuit depth for the model

        Args:
            inputs (Optional[np.ndarray]): The inputs, with which to call the
                circuit. Defaults to None.

        Returns:
            int: Circuit depth (longest path of gates in circuit.)
        """
        return self.get_specs(inputs)["resources"].depth

execution_type property writable #

Gets the execution type of the model.

Returns:

Name Type Description
str str

The execution type, one of 'density', 'expval', or 'probs'.

noise_params property writable #

Gets the noise parameters of the model.

Returns:

Type Description
Optional[Dict[str, Union[float, Dict[str, float]]]]

Optional[Dict[str, float]]: A dictionary of

Optional[Dict[str, Union[float, Dict[str, float]]]]

noise parameters or None if not set.

shots property writable #

Gets the number of shots to use for the quantum device.

Returns:

Type Description
Optional[int]

Optional[int]: The number of shots.

__call__(params=None, inputs=None, noise_params=None, cache=False, execution_type=None, force_mean=False) #

Perform a forward pass of the quantum circuit.

Parameters:

Name Type Description Default
params Optional[ndarray]

Weight vector of shape [n_layers, n_qubits*n_params_per_layer]. If None, model internal parameters are used.

None
inputs Optional[ndarray]

Input vector of shape [1]. If None, zeros are used.

None
noise_params Optional[Dict[str, float]]

The noise parameters. Defaults to None which results in the last set noise parameters being used.

None
cache Optional[bool]

Whether to cache the results. Defaults to False.

False
execution_type str

The type of execution. Must be one of 'expval', 'density', or 'probs'. Defaults to None which results in the last set execution type being used.

None
force_mean bool

Whether to average when performing n-local measurements. Defaults to False.

False

Returns:

Type Description
ndarray

np.ndarray: The output of the quantum circuit. The shape depends on the execution_type. - If execution_type is 'expval', returns an ndarray of shape (1,) if output_qubit is -1, else (len(output_qubit),). - If execution_type is 'density', returns an ndarray of shape (2n_qubits, 2n_qubits). - If execution_type is 'probs', returns an ndarray of shape (2n_qubits,) if output_qubit is -1, else (2len(output_qubit),).

Source code in qml_essentials/model.py
def __call__(
    self,
    params: Optional[np.ndarray] = None,
    inputs: Optional[np.ndarray] = None,
    noise_params: Optional[Dict[str, Union[float, Dict[str, float]]]] = None,
    cache: Optional[bool] = False,
    execution_type: Optional[str] = None,
    force_mean: bool = False,
) -> np.ndarray:
    """
    Perform a forward pass of the quantum circuit.

    Args:
        params (Optional[np.ndarray]): Weight vector of shape
            [n_layers, n_qubits*n_params_per_layer].
            If None, model internal parameters are used.
        inputs (Optional[np.ndarray]): Input vector of shape [1].
            If None, zeros are used.
        noise_params (Optional[Dict[str, float]], optional): The noise parameters.
            Defaults to None which results in the last
            set noise parameters being used.
        cache (Optional[bool], optional): Whether to cache the results.
            Defaults to False.
        execution_type (str, optional): The type of execution.
            Must be one of 'expval', 'density', or 'probs'.
            Defaults to None which results in the last set execution type
            being used.
        force_mean (bool, optional): Whether to average
            when performing n-local measurements.
            Defaults to False.

    Returns:
        np.ndarray: The output of the quantum circuit.
            The shape depends on the execution_type.
            - If execution_type is 'expval', returns an ndarray of shape
                (1,) if output_qubit is -1, else (len(output_qubit),).
            - If execution_type is 'density', returns an ndarray
                of shape (2**n_qubits, 2**n_qubits).
            - If execution_type is 'probs', returns an ndarray
                of shape (2**n_qubits,) if output_qubit is -1, else
                (2**len(output_qubit),).
    """
    # Call forward method which handles the actual caching etc.
    return self._forward(
        params=params,
        inputs=inputs,
        noise_params=noise_params,
        cache=cache,
        execution_type=execution_type,
        force_mean=force_mean,
    )

__init__(n_qubits, n_layers, circuit_type, data_reupload=True, state_preparation=None, encoding=Gates.RX, initialization='random', initialization_domain=[0, 2 * np.pi], output_qubit=-1, shots=None, random_seed=1000, as_pauli_circuit=False, remove_zero_encoding=True, mp_threshold=-1) #

Initialize the quantum circuit model. Parameters will have the shape [impl_n_layers, parameters_per_layer] where impl_n_layers is the number of layers provided and added by one depending if data_reupload is True and parameters_per_layer is given by the chosen ansatz.

The model is initialized with the following parameters as defaults: - noise_params: None - execution_type: "expval" - shots: None

Parameters:

Name Type Description Default
n_qubits int

The number of qubits in the circuit.

required
n_layers int

The number of layers in the circuit.

required
circuit_type (str, Circuit)

The type of quantum circuit to use. If None, defaults to "no_ansatz".

required
data_reupload bool

Whether to reupload data to the quantum device on each measurement. Defaults to True.

True
encoding Union[str, Callable, List[str], List[Callable]]

The unitary to use for encoding the input data. Can be a string (e.g. "RX") or a callable (e.g. qml.RX). Defaults to qml.RX. If input is multidimensional it is assumed to be a list of unitaries or a list of strings.

RX
initialization str

The strategy to initialize the parameters. Can be "random", "zeros", "zero-controlled", "pi", or "pi-controlled". Defaults to "random".

'random'
output_qubit (List[int], int)

The index of the output qubit (or qubits). When set to -1 all qubits are measured, or a global measurement is conducted, depending on the execution type.

-1
shots Optional[int]

The number of shots to use for the quantum device. Defaults to None.

None
random_seed int

seed for the random number generator in initialization is "random" and for random noise parameters. Defaults to 1000.

1000
as_pauli_circuit bool

whether the circuit is transformed to a Pauli-Clifford circuit as described by Nemkov et al. (https://doi.org/10.1103/PhysRevA.108.032406), which is required for analytical Fourier coefficient computation. Defaults to False.

False
remove_zero_encoding bool

whether to remove the zero encoding from the circuit. Defaults to True.

True
mp_threshold int

threshold above which the parameter batch dimension is split across multiple processes. Defaults to -1.

-1

Returns:

Type Description
None

None

Source code in qml_essentials/model.py
def __init__(
    self,
    n_qubits: int,
    n_layers: int,
    circuit_type: Union[str, Circuit],
    data_reupload: Union[bool, List[int]] = True,
    state_preparation: Union[str, Callable, List[str], List[Callable]] = None,
    encoding: Union[str, Callable, List[str], List[Callable]] = Gates.RX,
    initialization: str = "random",
    initialization_domain: List[float] = [0, 2 * np.pi],
    output_qubit: Union[List[int], int] = -1,
    shots: Optional[int] = None,
    random_seed: int = 1000,
    as_pauli_circuit: bool = False,
    remove_zero_encoding: bool = True,
    mp_threshold: int = -1,
) -> None:
    """
    Initialize the quantum circuit model.
    Parameters will have the shape [impl_n_layers, parameters_per_layer]
    where impl_n_layers is the number of layers provided and added by one
    depending if data_reupload is True and parameters_per_layer is given by
    the chosen ansatz.

    The model is initialized with the following parameters as defaults:
    - noise_params: None
    - execution_type: "expval"
    - shots: None

    Args:
        n_qubits (int): The number of qubits in the circuit.
        n_layers (int): The number of layers in the circuit.
        circuit_type (str, Circuit): The type of quantum circuit to use.
            If None, defaults to "no_ansatz".
        data_reupload (bool, optional): Whether to reupload data to the
            quantum device on each measurement. Defaults to True.
        encoding (Union[str, Callable, List[str], List[Callable]], optional):
            The unitary to use for encoding the input data. Can be a string
            (e.g. "RX") or a callable (e.g. qml.RX). Defaults to qml.RX.
            If input is multidimensional it is assumed to be a list of
            unitaries or a list of strings.
        initialization (str, optional): The strategy to initialize the parameters.
            Can be "random", "zeros", "zero-controlled", "pi", or "pi-controlled".
            Defaults to "random".
        output_qubit (List[int], int, optional): The index of the output
            qubit (or qubits). When set to -1 all qubits are measured, or a
            global measurement is conducted, depending on the execution
            type.
        shots (Optional[int], optional): The number of shots to use for
            the quantum device. Defaults to None.
        random_seed (int, optional): seed for the random number generator
            in initialization is "random" and for random noise parameters.
            Defaults to 1000.
        as_pauli_circuit (bool, optional): whether the circuit is
            transformed to a Pauli-Clifford circuit as described by Nemkov
            et al. (https://doi.org/10.1103/PhysRevA.108.032406), which is
            required for analytical Fourier coefficient computation.
            Defaults to False.
        remove_zero_encoding (bool, optional): whether to
            remove the zero encoding from the circuit. Defaults to True.
        mp_threshold (int, optional): threshold above which the parameter
            batch dimension is split across multiple processes.
            Defaults to -1.

    Returns:
        None
    """
    # Initialize default parameters needed for circuit evaluation
    self.noise_params: Optional[Dict[str, Union[float, Dict[str, float]]]] = None
    self.execution_type: Optional[str] = "expval"
    self.shots = shots
    self.remove_zero_encoding = remove_zero_encoding
    self.mp_threshold = mp_threshold

    if isinstance(output_qubit, list):
        assert (
            len(output_qubit) <= n_qubits
        ), f"Size of output_qubit {len(output_qubit)} cannot be\
        larger than number of qubits {n_qubits}."
    self.output_qubit: Union[List[int], int] = output_qubit

    # Copy the parameters
    self.n_qubits: int = n_qubits
    self.n_layers: int = n_layers

    # Process data reuploading strategy and set degree
    if not isinstance(data_reupload, bool):
        if not isinstance(data_reupload, np.ndarray):
            data_reupload = np.array(data_reupload)
        assert data_reupload.shape == (n_layers, n_qubits)
    else:
        if data_reupload:
            impl_n_layers: int = (
                n_layers + 1
            )  # we need L+1 according to Schuld et al.
            data_reupload = np.ones((n_layers, n_qubits))
        else:
            impl_n_layers: int = n_layers
            data_reupload = np.zeros((n_layers, n_qubits))
            data_reupload[0][0] = 1

    self.degree = np.count_nonzero(data_reupload)
    self.data_reupload = data_reupload

    if self.degree > 1:
        impl_n_layers: int = n_layers + 1  # we need L+1 according to Schuld et al.
    else:
        impl_n_layers = n_layers

    # Initialize ansatz
    # only weak check for str. We trust the user to provide sth useful
    if isinstance(circuit_type, str):
        self.pqc: Callable[[Optional[np.ndarray], int], int] = getattr(
            Ansaetze, circuit_type or "No_Ansatz"
        )()
    else:
        self.pqc = circuit_type()

    # Initialize rng in Gates
    Gates.init_rng(random_seed)

    # Initialize state preparation
    # first check if we have a str, list or callable
    if isinstance(state_preparation, str):
        # if str, use the pennylane fct
        self._sp = [getattr(Gates, f"{state_preparation}")]
    elif isinstance(state_preparation, list):
        # if list, check if str or callable
        if isinstance(state_preparation[0], str):
            self._sp = [getattr(Gates, f"{sp}") for sp in state_preparation]
        else:
            self._sp = state_preparation
    elif state_preparation is None:
        self._sp = [lambda *args, **kwargs: None]
    else:
        # default to callable
        self._sp = [state_preparation]

    # Initialize encoding
    # first check if we have a str, list or callable
    if isinstance(encoding, str):
        # if str, use the pennylane fct
        self._enc = getattr(Gates, f"{encoding}")
    elif isinstance(encoding, list):
        # if list, check if str or callable
        if isinstance(encoding[0], str):
            self._enc = [getattr(Gates, f"{enc}") for enc in encoding]
        else:
            self._enc = encoding

        if len(self._enc) == 1:
            self._enc = self._enc[0]
    else:
        # default to callable
        self._enc = encoding

    # Number of possible inputs
    self.n_input_feat = len(encoding) if isinstance(encoding, List) else 1

    log.info(f"Using {circuit_type} circuit.")

    log.info(f"Number of implicit layers set to {impl_n_layers}.")
    # calculate the shape of the parameter vector here, we will re-use this in init.
    self._params_shape: Tuple[int, int] = (
        impl_n_layers,
        self.pqc.n_params_per_layer(self.n_qubits),
    )
    self.batch_shape = (1, 1)
    # this will also be re-used in the init method,
    # however, only if nothing is provided
    self._inialization_strategy = initialization
    self._initialization_domain = initialization_domain

    # ..here! where we only require a rng
    self.initialize_params(np.random.default_rng(random_seed))

    # Initialize two circuits, one with the default device and
    # one with the mixed device
    # which allows us to later route depending on the state_vector flag
    self.as_pauli_circuit = as_pauli_circuit

    self.circuit_mixed: qml.QNode = qml.QNode(
        self._circuit,
        qml.device("default.mixed", shots=self.shots, wires=self.n_qubits),
    )

draw(inputs=None, figure='text', *args, **kwargs) #

Draws the quantum circuit using the specified visualization method.

Parameters:

Name Type Description Default
inputs Optional[ndarray]

Input vector for the circuit. If None, the default inputs are used.

None
figure str

The type of figure to generate. Must be one of 'text', 'mpl', or 'tikz'. Defaults to 'text'.

'text'

Returns: Either a string, matplotlib figure or TikzFigure object (similar to string) depending on the chosen visualization. args: Additional arguments to be passed to the visualization method. *kwargs: Additional keyword arguments to be passed to the visualization method.

Raises:

Type Description
AssertionError

If the 'figure' argument is not one of the accepted values.

Source code in qml_essentials/model.py
def draw(self, inputs=None, figure="text", *args, **kwargs):
    """
    Draws the quantum circuit using the specified visualization method.

    Args:
        inputs (Optional[np.ndarray]): Input vector for the circuit. If None,
            the default inputs are used.
        figure (str, optional): The type of figure to generate. Must be one of
            'text', 'mpl', or 'tikz'. Defaults to 'text'.
    Returns:
        Either a string, matplotlib figure or TikzFigure object (similar to string)
        depending on the chosen visualization.
    *args:
        Additional arguments to be passed to the visualization method.
    **kwargs:
        Additional keyword arguments to be passed to the visualization method.

    Raises:
        AssertionError: If the 'figure' argument is not one of the accepted values.
    """

    if not isinstance(self.circuit, qml.QNode):
        # TODO: throws strange argument error if not catched
        return ""

    assert figure in [
        "text",
        "mpl",
        "tikz",
    ], f"Invalid figure: {figure}. Must be 'text', 'mpl' or 'tikz'."

    inputs = self._inputs_validation(inputs)

    if figure == "mpl":
        result = qml.draw_mpl(self.circuit)(
            params=self.params, inputs=inputs, *args, **kwargs
        )
    elif figure == "tikz":
        result = QuanTikz.build(
            self.circuit, params=self.params, inputs=inputs, *args, **kwargs
        )
    else:
        result = qml.draw(self.circuit)(params=self.params, inputs=inputs)
    return result

get_circuit_depth(inputs=None) #

Obtain circuit depth for the model

Parameters:

Name Type Description Default
inputs Optional[ndarray]

The inputs, with which to call the circuit. Defaults to None.

None

Returns:

Name Type Description
int int

Circuit depth (longest path of gates in circuit.)

Source code in qml_essentials/model.py
def get_circuit_depth(self, inputs: Optional[np.ndarray] = None) -> int:
    """
    Obtain circuit depth for the model

    Args:
        inputs (Optional[np.ndarray]): The inputs, with which to call the
            circuit. Defaults to None.

    Returns:
        int: Circuit depth (longest path of gates in circuit.)
    """
    return self.get_specs(inputs)["resources"].depth

get_specs(inputs=None) #

Get pennylane specs for the model.

Parameters:

Name Type Description Default
inputs Optional[ndarray]

The inputs, with which to call the circuit. Defaults to None.

None

Returns:

Name Type Description
dict dict

Dictionary of specs. The key "resources" contains information about the circuit size and gate statistics.

Source code in qml_essentials/model.py
def get_specs(self, inputs: Optional[np.ndarray] = None) -> dict:
    """
    Get pennylane specs for the model.

    Args:
        inputs (Optional[np.ndarray]): The inputs, with which to call the
            circuit. Defaults to None.

    Returns:
        dict: Dictionary of specs. The key "resources" contains information
            about the circuit size and gate statistics.
    """
    inputs = self._inputs_validation(inputs)
    spec_model = deepcopy(self)
    spec_model.noise_params = None  # remove noise
    return qml.specs(spec_model.circuit)(self.params, inputs)

initialize_params(rng, repeat=None, initialization=None, initialization_domain=None) #

Initializes the parameters of the model.

Parameters:

Name Type Description Default
rng Generator

A random number generator to use for initialization.

required
repeat int

The number of times to repeat the parameters. If None, the number of layers is used.

None
initialization str

The strategy to use for parameter initialization. If None, the strategy specified in the constructor is used.

None
initialization_domain List[float]

The domain to use for parameter initialization. If None, the domain specified in the constructor is used.

None

Returns:

Type Description
None

None

Source code in qml_essentials/model.py
def initialize_params(
    self,
    rng: np.random.Generator,
    repeat: int = None,
    initialization: str = None,
    initialization_domain: List[float] = None,
) -> None:
    """
    Initializes the parameters of the model.

    Args:
        rng: A random number generator to use for initialization.
        repeat: The number of times to repeat the parameters.
            If None, the number of layers is used.
        initialization: The strategy to use for parameter initialization.
            If None, the strategy specified in the constructor is used.
        initialization_domain: The domain to use for parameter initialization.
            If None, the domain specified in the constructor is used.

    Returns:
        None
    """
    params_shape = (
        self._params_shape if repeat is None else [*self._params_shape, repeat]
    )
    # use existing strategy if not specified
    initialization = initialization or self._inialization_strategy
    initialization_domain = initialization_domain or self._initialization_domain

    def set_control_params(params: np.ndarray, value: float) -> np.ndarray:
        indices = self.pqc.get_control_indices(self.n_qubits)
        if indices is None:
            warnings.warn(
                f"Specified {initialization} but circuit\
                does not contain controlled rotation gates.\
                Parameters are intialized randomly.",
                UserWarning,
            )
        else:
            params[:, indices[0] : indices[1] : indices[2]] = (
                np.ones_like(params[:, indices[0] : indices[1] : indices[2]])
                * value
            )
        return params

    if initialization == "random":
        self.params: np.ndarray = rng.uniform(
            *initialization_domain, params_shape, requires_grad=True
        )
    elif initialization == "zeros":
        self.params: np.ndarray = np.zeros(params_shape, requires_grad=True)
    elif initialization == "pi":
        self.params: np.ndarray = np.ones(params_shape, requires_grad=True) * np.pi
    elif initialization == "zero-controlled":
        self.params: np.ndarray = rng.uniform(
            *initialization_domain, params_shape, requires_grad=True
        )
        self.params = set_control_params(self.params, 0)
    elif initialization == "pi-controlled":
        self.params: np.ndarray = rng.uniform(
            *initialization_domain, params_shape, requires_grad=True
        )
        self.params = set_control_params(self.params, np.pi)
    else:
        raise Exception("Invalid initialization method")

    log.info(
        f"Initialized parameters with shape {self.params.shape}\
        using strategy {initialization}."
    )

Entanglement#

from qml_essentials.entanglement import Entanglement
Source code in qml_essentials/entanglement.py
class Entanglement:

    @staticmethod
    def meyer_wallach(
        model: Model,
        n_samples: Optional[int | None],
        seed: Optional[int],
        scale: bool = False,
        **kwargs: Any,
    ) -> float:
        """
        Calculates the entangling capacity of a given quantum circuit
        using Meyer-Wallach measure.

        Args:
            model (Model): The quantum circuit model.
            n_samples (Optional[int]): Number of samples per qubit.
                If None or < 0, the current parameters of the model are used.
            seed (Optional[int]): Seed for the random number generator.
            scale (bool): Whether to scale the number of samples.
            kwargs (Any): Additional keyword arguments for the model function.

        Returns:
            float: Entangling capacity of the given circuit, guaranteed
                to be between 0.0 and 1.0.
        """
        if "noise_params" in kwargs:
            log.warning(
                "Meyer-Wallach measure not suitable for noisy circuits.\
                    Consider 'relative_entropy' instead."
            )

        if scale:
            n_samples = np.power(2, model.n_qubits) * n_samples

        rng = np.random.default_rng(seed)
        if n_samples is not None and n_samples > 0:
            assert seed is not None, "Seed must be provided when samples > 0"
            # TODO: maybe switch to JAX rng
            model.initialize_params(rng=rng, repeat=n_samples)
        else:
            if seed is not None:
                log.warning("Seed is ignored when samples is 0")

        # implicitly set input to none in case it's not needed
        kwargs.setdefault("inputs", None)
        # explicitly set execution type because everything else won't work
        rhos = model(execution_type="density", **kwargs).reshape(
            -1, 2**model.n_qubits, 2**model.n_qubits
        )

        mw_measure = np.zeros(len(rhos))

        for i, rho in enumerate(rhos):
            mw_measure[i] = Entanglement._compute_meyer_wallach_meas(
                rho, model.n_qubits
            )

        # Average all iterated states
        entangling_capability = min(max(mw_measure.mean(), 0.0), 1.0)
        log.debug(f"Variance of measure: {mw_measure.var()}")

        # catch floating point errors
        return float(entangling_capability)

    @staticmethod
    def _compute_meyer_wallach_meas(rho: np.ndarray, n_qubits: int):
        qb = list(range(n_qubits))
        entropy = 0
        for j in range(n_qubits):
            # Formula 6 in https://doi.org/10.48550/arXiv.quant-ph/0305094
            density = qml.math.partial_trace(rho, qb[:j] + qb[j + 1 :])
            # only real values, because imaginary part will be separate
            # in all following calculations anyway
            # entropy should be 1/2 <= entropy <= 1
            entropy += np.trace((density @ density).real)

        # inverse averaged entropy and scale to [0, 1]
        return 2 * (1 - entropy / n_qubits)

    @staticmethod
    def bell_measurements(
        model: Model, n_samples: int, seed: int, scale: bool = False, **kwargs: Any
    ) -> float:
        """
        Compute the Bell measurement for a given model.

        Args:
            model (Model): The quantum circuit model.
            n_samples (int): The number of samples to compute the measure for.
            seed (int): The seed for the random number generator.
            scale (bool): Whether to scale the number of samples
                according to the number of qubits.
            **kwargs (Any): Additional keyword arguments for the model function.

        Returns:
            float: The Bell measurement value.
        """
        if "noise_params" in kwargs:
            log.warning(
                "Bell Measurements not suitable for noisy circuits.\
                    Consider 'relative_entropy' instead."
            )

        if scale:
            n_samples = np.power(2, model.n_qubits) * n_samples

        def _circuit(params: np.ndarray, inputs: np.ndarray) -> List[np.ndarray]:
            """
            Compute the Bell measurement circuit.

            Args:
                params (np.ndarray): The model parameters.
                inputs (np.ndarray): The input to the model.

            Returns:
                List[np.ndarray]: The probabilities of the Bell measurement.
            """
            model._variational(params, inputs)

            qml.map_wires(
                model._variational,
                {i: i + model.n_qubits for i in range(model.n_qubits)},
            )(params, inputs)

            for q in range(model.n_qubits):
                qml.CNOT(wires=[q, q + model.n_qubits])
                qml.H(q)

            obs_wires = [(q, q + model.n_qubits) for q in range(model.n_qubits)]
            return [qml.probs(wires=w) for w in obs_wires]

        model.circuit = qml.QNode(
            _circuit,
            qml.device(
                "default.qubit",
                shots=model.shots,
                wires=model.n_qubits * 2,
            ),
        )

        rng = np.random.default_rng(seed)
        if n_samples is not None and n_samples > 0:
            assert seed is not None, "Seed must be provided when samples > 0"
            # TODO: maybe switch to JAX rng
            model.initialize_params(rng=rng, repeat=n_samples)
            params = model.params
        else:
            if seed is not None:
                log.warning("Seed is ignored when samples is 0")

            if len(model.params.shape) <= 2:
                params = model.params.reshape(*model.params.shape, 1)
            else:
                log.info(f"Using sample size of model params: {model.params.shape[-1]}")
                params = model.params

        n_samples = params.shape[-1]
        mw_measure = np.zeros(n_samples)

        # implicitly set input to none in case it's not needed
        kwargs.setdefault("inputs", None)
        exp = model(params=params, **kwargs)
        exp = 1 - 2 * exp[:, :, -1]
        mw_measure = 2 * (1 - exp.mean(axis=0))
        entangling_capability = min(max(mw_measure.mean(), 0.0), 1.0)
        log.debug(f"Variance of measure: {mw_measure.var()}")

        return float(entangling_capability)

    @staticmethod
    def relative_entropy(
        model: Model,
        n_samples: int,
        n_sigmas: int,
        seed: Optional[int],
        scale: bool = False,
        **kwargs: Any,
    ) -> float:
        """
        Calculates the relative entropy of entanglement of a given quantum
        circuit. This measure is also applicable to mixed state, albeit it
        might me not fully accurate in this simplified case.

        As the relative entropy is generally defined as the smallest relative
        entropy from the state in question to the set of separable states.
        However, as computing the nearest separable state is NP-hard, we select
        n_sigmas of random separable states to compute the distance to, which
        is not necessarily the nearest. Thus, this measure of entanglement
        presents an upper limit of entanglement.

        As the relative entropy is not necessarily between zero and one, this
        function also normalises by the relative entroy to the GHZ state.

        Args:
            model (Model): The quantum circuit model.
            n_samples (int): Number of samples per qubit.
                If <= 0, the current parameters of the model are used.
            n_sigmas (int): Number of random separable pure states to compare against.
            seed (Optional[int]): Seed for the random number generator.
            scale (bool): Whether to scale the number of samples.
            kwargs (Any): Additional keyword arguments for the model function.

        Returns:
            float: Entangling capacity of the given circuit, guaranteed
                to be between 0.0 and 1.0.
        """
        dim = np.power(2, model.n_qubits)
        if scale:
            n_samples = dim * n_samples
            n_sigmas = dim * n_sigmas

        rng = np.random.default_rng(seed)

        # Random separable states
        log_sigmas = sample_random_separable_states(
            model.n_qubits, n_samples=n_sigmas, rng=rng, take_log=True
        )

        if n_samples > 0:
            assert seed is not None, "Seed must be provided when samples > 0"
            model.initialize_params(rng=rng, repeat=n_samples)
        else:
            if seed is not None:
                log.warning("Seed is ignored when samples is 0")

            if len(model.params.shape) <= 2:
                model.params = model.params.reshape(*model.params.shape, 1)
            else:
                log.info(f"Using sample size of model params: {model.params.shape[-1]}")

        ghz_model = Model(model.n_qubits, 1, "GHZ", data_reupload=False)

        normalised_entropies = np.zeros((n_sigmas, n_samples))
        for j, log_sigma in enumerate(log_sigmas):

            # Entropy of GHZ states should be maximal
            ghz_entropy = Entanglement._compute_rel_entropies(
                ghz_model,
                log_sigma,
            )

            rel_entropy = Entanglement._compute_rel_entropies(
                model, log_sigma, **kwargs
            )

            normalised_entropies[j] = rel_entropy / ghz_entropy

        # Average all iterated states
        entangling_capability = normalised_entropies.min(axis=0).mean()
        log.debug(f"Variance of measure: {normalised_entropies.var()}")

        return entangling_capability

    @staticmethod
    def _compute_rel_entropies(
        model: Model,
        log_sigma: np.ndarray,
        **kwargs,
    ) -> np.ndarray:
        """
        Compute the relative entropy for a given model.

        Args:
            model (Model): The model for which to compute entanglement
            log_sigma (np.ndarray): Density matrix of next separable state

        Returns:
            np.ndarray: Relative Entropy for each sample
        """
        # implicitly set input to none in case it's not needed
        kwargs.setdefault("inputs", None)
        # explicitly set execution type because everything else won't work
        rho = model(execution_type="density", **kwargs)
        rho = rho.reshape(-1, 2**model.n_qubits, 2**model.n_qubits)
        log_rho = logm_v(rho) / np.log(2)

        rel_entropies = np.abs(np.trace(rho @ (log_rho - log_sigma), axis1=1, axis2=2))

        return rel_entropies

    @staticmethod
    def entanglement_of_formation(
        model: Model,
        n_samples: int,
        seed: Optional[int],
        scale: bool = False,
        always_decompose: bool = False,
        **kwargs: Any,
    ) -> float:
        """
        This function implements the entanglement of formation for mixed
        quantum systems.
        In that a mixed state gets decomposed into pure states with respective
        probabilities using the eigendecomposition of the density matrix.
        Then, the Meyer-Wallach measure is computed for each pure state,
        weighted by the eigenvalue.
        See e.g. https://doi.org/10.48550/arXiv.quant-ph/0504163

        Note that the decomposition is *not unique*! Therefore, this measure
        presents the entanglement for *some* decomposition into pure states,
        not necessarily the one that is anticipated when applying the Kraus
        channels.
        If a pure state is provided, this results in the same value as the
        Entanglement.meyer_wallach function if `always_decompose` flag is not set.

        Args:
            model (Model): The quantum circuit model.
            n_samples (int): Number of samples per qubit.
            seed (Optional[int]): Seed for the random number generator.
            scale (bool): Whether to scale the number of samples.
            always_decompose (bool): Whether to explicitly compute the
                entantlement of formation for the eigendecomposition of a pure
                state.
            kwargs (Any): Additional keyword arguments for the model function.

        Returns:
            float: Entangling capacity of the given circuit, guaranteed
                to be between 0.0 and 1.0.
        """

        if scale:
            n_samples = np.power(2, model.n_qubits) * n_samples

        rng = np.random.default_rng(seed)
        if n_samples > 0:
            assert seed is not None, "Seed must be provided when samples > 0"
            model.initialize_params(rng=rng, repeat=n_samples)
        else:
            if seed is not None:
                log.warning("Seed is ignored when samples is 0")

            if len(model.params.shape) <= 2:
                model.params = model.params.reshape(*model.params.shape, 1)
            else:
                log.info(f"Using sample size of model params: {model.params.shape[-1]}")

        # implicitly set input to none in case it's not needed
        kwargs.setdefault("inputs", None)
        rhos = model(execution_type="density", **kwargs)
        rhos = rhos.reshape(-1, 2**model.n_qubits, 2**model.n_qubits)
        entanglement = np.zeros(len(rhos))
        for i, rho in enumerate(rhos):
            entanglement[i] = Entanglement._compute_entanglement_of_formation(
                rho, model.n_qubits, always_decompose
            )
        entangling_capability = min(max(entanglement.mean(), 0.0), 1.0)
        return float(entangling_capability)

    @staticmethod
    def _compute_entanglement_of_formation(
        rho: np.ndarray, n_qubits: int, always_decompose: bool
    ) -> float:
        """
        Computes the entanglement of formation for a given density matrix rho.

        Args:
            rho (np.ndarray): The density matrix
            n_qubits (int): Number of qubits
            always_decompose (bool): Whether to explicitly compute the
                entantlement of formation for the eigendecomposition of a pure
                state.

        Returns:
            float: Entanglement for the provided state.
        """
        eigenvalues, eigenvectors = np.linalg.eigh(rho)
        if any(np.isclose(eigenvalues, 1.0)) and not always_decompose:  # Pure state
            return Entanglement._compute_meyer_wallach_meas(rho, n_qubits)
        ent = 0
        for prob, ev in zip(eigenvalues, eigenvectors):
            ev = ev.reshape(-1, 1)
            rho = ev @ np.conjugate(ev).T
            mw_measure = Entanglement._compute_meyer_wallach_meas(rho, n_qubits)
            ent += prob * mw_measure
        return ent

bell_measurements(model, n_samples, seed, scale=False, **kwargs) staticmethod #

Compute the Bell measurement for a given model.

Parameters:

Name Type Description Default
model Model

The quantum circuit model.

required
n_samples int

The number of samples to compute the measure for.

required
seed int

The seed for the random number generator.

required
scale bool

Whether to scale the number of samples according to the number of qubits.

False
**kwargs Any

Additional keyword arguments for the model function.

{}

Returns:

Name Type Description
float float

The Bell measurement value.

Source code in qml_essentials/entanglement.py
@staticmethod
def bell_measurements(
    model: Model, n_samples: int, seed: int, scale: bool = False, **kwargs: Any
) -> float:
    """
    Compute the Bell measurement for a given model.

    Args:
        model (Model): The quantum circuit model.
        n_samples (int): The number of samples to compute the measure for.
        seed (int): The seed for the random number generator.
        scale (bool): Whether to scale the number of samples
            according to the number of qubits.
        **kwargs (Any): Additional keyword arguments for the model function.

    Returns:
        float: The Bell measurement value.
    """
    if "noise_params" in kwargs:
        log.warning(
            "Bell Measurements not suitable for noisy circuits.\
                Consider 'relative_entropy' instead."
        )

    if scale:
        n_samples = np.power(2, model.n_qubits) * n_samples

    def _circuit(params: np.ndarray, inputs: np.ndarray) -> List[np.ndarray]:
        """
        Compute the Bell measurement circuit.

        Args:
            params (np.ndarray): The model parameters.
            inputs (np.ndarray): The input to the model.

        Returns:
            List[np.ndarray]: The probabilities of the Bell measurement.
        """
        model._variational(params, inputs)

        qml.map_wires(
            model._variational,
            {i: i + model.n_qubits for i in range(model.n_qubits)},
        )(params, inputs)

        for q in range(model.n_qubits):
            qml.CNOT(wires=[q, q + model.n_qubits])
            qml.H(q)

        obs_wires = [(q, q + model.n_qubits) for q in range(model.n_qubits)]
        return [qml.probs(wires=w) for w in obs_wires]

    model.circuit = qml.QNode(
        _circuit,
        qml.device(
            "default.qubit",
            shots=model.shots,
            wires=model.n_qubits * 2,
        ),
    )

    rng = np.random.default_rng(seed)
    if n_samples is not None and n_samples > 0:
        assert seed is not None, "Seed must be provided when samples > 0"
        # TODO: maybe switch to JAX rng
        model.initialize_params(rng=rng, repeat=n_samples)
        params = model.params
    else:
        if seed is not None:
            log.warning("Seed is ignored when samples is 0")

        if len(model.params.shape) <= 2:
            params = model.params.reshape(*model.params.shape, 1)
        else:
            log.info(f"Using sample size of model params: {model.params.shape[-1]}")
            params = model.params

    n_samples = params.shape[-1]
    mw_measure = np.zeros(n_samples)

    # implicitly set input to none in case it's not needed
    kwargs.setdefault("inputs", None)
    exp = model(params=params, **kwargs)
    exp = 1 - 2 * exp[:, :, -1]
    mw_measure = 2 * (1 - exp.mean(axis=0))
    entangling_capability = min(max(mw_measure.mean(), 0.0), 1.0)
    log.debug(f"Variance of measure: {mw_measure.var()}")

    return float(entangling_capability)

entanglement_of_formation(model, n_samples, seed, scale=False, always_decompose=False, **kwargs) staticmethod #

This function implements the entanglement of formation for mixed quantum systems. In that a mixed state gets decomposed into pure states with respective probabilities using the eigendecomposition of the density matrix. Then, the Meyer-Wallach measure is computed for each pure state, weighted by the eigenvalue. See e.g. https://doi.org/10.48550/arXiv.quant-ph/0504163

Note that the decomposition is not unique! Therefore, this measure presents the entanglement for some decomposition into pure states, not necessarily the one that is anticipated when applying the Kraus channels. If a pure state is provided, this results in the same value as the Entanglement.meyer_wallach function if always_decompose flag is not set.

Parameters:

Name Type Description Default
model Model

The quantum circuit model.

required
n_samples int

Number of samples per qubit.

required
seed Optional[int]

Seed for the random number generator.

required
scale bool

Whether to scale the number of samples.

False
always_decompose bool

Whether to explicitly compute the entantlement of formation for the eigendecomposition of a pure state.

False
kwargs Any

Additional keyword arguments for the model function.

{}

Returns:

Name Type Description
float float

Entangling capacity of the given circuit, guaranteed to be between 0.0 and 1.0.

Source code in qml_essentials/entanglement.py
@staticmethod
def entanglement_of_formation(
    model: Model,
    n_samples: int,
    seed: Optional[int],
    scale: bool = False,
    always_decompose: bool = False,
    **kwargs: Any,
) -> float:
    """
    This function implements the entanglement of formation for mixed
    quantum systems.
    In that a mixed state gets decomposed into pure states with respective
    probabilities using the eigendecomposition of the density matrix.
    Then, the Meyer-Wallach measure is computed for each pure state,
    weighted by the eigenvalue.
    See e.g. https://doi.org/10.48550/arXiv.quant-ph/0504163

    Note that the decomposition is *not unique*! Therefore, this measure
    presents the entanglement for *some* decomposition into pure states,
    not necessarily the one that is anticipated when applying the Kraus
    channels.
    If a pure state is provided, this results in the same value as the
    Entanglement.meyer_wallach function if `always_decompose` flag is not set.

    Args:
        model (Model): The quantum circuit model.
        n_samples (int): Number of samples per qubit.
        seed (Optional[int]): Seed for the random number generator.
        scale (bool): Whether to scale the number of samples.
        always_decompose (bool): Whether to explicitly compute the
            entantlement of formation for the eigendecomposition of a pure
            state.
        kwargs (Any): Additional keyword arguments for the model function.

    Returns:
        float: Entangling capacity of the given circuit, guaranteed
            to be between 0.0 and 1.0.
    """

    if scale:
        n_samples = np.power(2, model.n_qubits) * n_samples

    rng = np.random.default_rng(seed)
    if n_samples > 0:
        assert seed is not None, "Seed must be provided when samples > 0"
        model.initialize_params(rng=rng, repeat=n_samples)
    else:
        if seed is not None:
            log.warning("Seed is ignored when samples is 0")

        if len(model.params.shape) <= 2:
            model.params = model.params.reshape(*model.params.shape, 1)
        else:
            log.info(f"Using sample size of model params: {model.params.shape[-1]}")

    # implicitly set input to none in case it's not needed
    kwargs.setdefault("inputs", None)
    rhos = model(execution_type="density", **kwargs)
    rhos = rhos.reshape(-1, 2**model.n_qubits, 2**model.n_qubits)
    entanglement = np.zeros(len(rhos))
    for i, rho in enumerate(rhos):
        entanglement[i] = Entanglement._compute_entanglement_of_formation(
            rho, model.n_qubits, always_decompose
        )
    entangling_capability = min(max(entanglement.mean(), 0.0), 1.0)
    return float(entangling_capability)

meyer_wallach(model, n_samples, seed, scale=False, **kwargs) staticmethod #

Calculates the entangling capacity of a given quantum circuit using Meyer-Wallach measure.

Parameters:

Name Type Description Default
model Model

The quantum circuit model.

required
n_samples Optional[int]

Number of samples per qubit. If None or < 0, the current parameters of the model are used.

required
seed Optional[int]

Seed for the random number generator.

required
scale bool

Whether to scale the number of samples.

False
kwargs Any

Additional keyword arguments for the model function.

{}

Returns:

Name Type Description
float float

Entangling capacity of the given circuit, guaranteed to be between 0.0 and 1.0.

Source code in qml_essentials/entanglement.py
@staticmethod
def meyer_wallach(
    model: Model,
    n_samples: Optional[int | None],
    seed: Optional[int],
    scale: bool = False,
    **kwargs: Any,
) -> float:
    """
    Calculates the entangling capacity of a given quantum circuit
    using Meyer-Wallach measure.

    Args:
        model (Model): The quantum circuit model.
        n_samples (Optional[int]): Number of samples per qubit.
            If None or < 0, the current parameters of the model are used.
        seed (Optional[int]): Seed for the random number generator.
        scale (bool): Whether to scale the number of samples.
        kwargs (Any): Additional keyword arguments for the model function.

    Returns:
        float: Entangling capacity of the given circuit, guaranteed
            to be between 0.0 and 1.0.
    """
    if "noise_params" in kwargs:
        log.warning(
            "Meyer-Wallach measure not suitable for noisy circuits.\
                Consider 'relative_entropy' instead."
        )

    if scale:
        n_samples = np.power(2, model.n_qubits) * n_samples

    rng = np.random.default_rng(seed)
    if n_samples is not None and n_samples > 0:
        assert seed is not None, "Seed must be provided when samples > 0"
        # TODO: maybe switch to JAX rng
        model.initialize_params(rng=rng, repeat=n_samples)
    else:
        if seed is not None:
            log.warning("Seed is ignored when samples is 0")

    # implicitly set input to none in case it's not needed
    kwargs.setdefault("inputs", None)
    # explicitly set execution type because everything else won't work
    rhos = model(execution_type="density", **kwargs).reshape(
        -1, 2**model.n_qubits, 2**model.n_qubits
    )

    mw_measure = np.zeros(len(rhos))

    for i, rho in enumerate(rhos):
        mw_measure[i] = Entanglement._compute_meyer_wallach_meas(
            rho, model.n_qubits
        )

    # Average all iterated states
    entangling_capability = min(max(mw_measure.mean(), 0.0), 1.0)
    log.debug(f"Variance of measure: {mw_measure.var()}")

    # catch floating point errors
    return float(entangling_capability)

relative_entropy(model, n_samples, n_sigmas, seed, scale=False, **kwargs) staticmethod #

Calculates the relative entropy of entanglement of a given quantum circuit. This measure is also applicable to mixed state, albeit it might me not fully accurate in this simplified case.

As the relative entropy is generally defined as the smallest relative entropy from the state in question to the set of separable states. However, as computing the nearest separable state is NP-hard, we select n_sigmas of random separable states to compute the distance to, which is not necessarily the nearest. Thus, this measure of entanglement presents an upper limit of entanglement.

As the relative entropy is not necessarily between zero and one, this function also normalises by the relative entroy to the GHZ state.

Parameters:

Name Type Description Default
model Model

The quantum circuit model.

required
n_samples int

Number of samples per qubit. If <= 0, the current parameters of the model are used.

required
n_sigmas int

Number of random separable pure states to compare against.

required
seed Optional[int]

Seed for the random number generator.

required
scale bool

Whether to scale the number of samples.

False
kwargs Any

Additional keyword arguments for the model function.

{}

Returns:

Name Type Description
float float

Entangling capacity of the given circuit, guaranteed to be between 0.0 and 1.0.

Source code in qml_essentials/entanglement.py
@staticmethod
def relative_entropy(
    model: Model,
    n_samples: int,
    n_sigmas: int,
    seed: Optional[int],
    scale: bool = False,
    **kwargs: Any,
) -> float:
    """
    Calculates the relative entropy of entanglement of a given quantum
    circuit. This measure is also applicable to mixed state, albeit it
    might me not fully accurate in this simplified case.

    As the relative entropy is generally defined as the smallest relative
    entropy from the state in question to the set of separable states.
    However, as computing the nearest separable state is NP-hard, we select
    n_sigmas of random separable states to compute the distance to, which
    is not necessarily the nearest. Thus, this measure of entanglement
    presents an upper limit of entanglement.

    As the relative entropy is not necessarily between zero and one, this
    function also normalises by the relative entroy to the GHZ state.

    Args:
        model (Model): The quantum circuit model.
        n_samples (int): Number of samples per qubit.
            If <= 0, the current parameters of the model are used.
        n_sigmas (int): Number of random separable pure states to compare against.
        seed (Optional[int]): Seed for the random number generator.
        scale (bool): Whether to scale the number of samples.
        kwargs (Any): Additional keyword arguments for the model function.

    Returns:
        float: Entangling capacity of the given circuit, guaranteed
            to be between 0.0 and 1.0.
    """
    dim = np.power(2, model.n_qubits)
    if scale:
        n_samples = dim * n_samples
        n_sigmas = dim * n_sigmas

    rng = np.random.default_rng(seed)

    # Random separable states
    log_sigmas = sample_random_separable_states(
        model.n_qubits, n_samples=n_sigmas, rng=rng, take_log=True
    )

    if n_samples > 0:
        assert seed is not None, "Seed must be provided when samples > 0"
        model.initialize_params(rng=rng, repeat=n_samples)
    else:
        if seed is not None:
            log.warning("Seed is ignored when samples is 0")

        if len(model.params.shape) <= 2:
            model.params = model.params.reshape(*model.params.shape, 1)
        else:
            log.info(f"Using sample size of model params: {model.params.shape[-1]}")

    ghz_model = Model(model.n_qubits, 1, "GHZ", data_reupload=False)

    normalised_entropies = np.zeros((n_sigmas, n_samples))
    for j, log_sigma in enumerate(log_sigmas):

        # Entropy of GHZ states should be maximal
        ghz_entropy = Entanglement._compute_rel_entropies(
            ghz_model,
            log_sigma,
        )

        rel_entropy = Entanglement._compute_rel_entropies(
            model, log_sigma, **kwargs
        )

        normalised_entropies[j] = rel_entropy / ghz_entropy

    # Average all iterated states
    entangling_capability = normalised_entropies.min(axis=0).mean()
    log.debug(f"Variance of measure: {normalised_entropies.var()}")

    return entangling_capability

Expressibility#

from qml_essentials.expressibility import Expressibility
Source code in qml_essentials/expressibility.py
class Expressibility:
    @staticmethod
    def _sample_state_fidelities(
        model: Model,
        x_samples: np.ndarray,
        n_samples: int,
        seed: int,
        kwargs: Any,
    ) -> np.ndarray:
        """
        Compute the fidelities for each pair of input samples and parameter sets.

        Args:
            model (Callable): Function that models the quantum circuit.
            x_samples (np.ndarray): Array of shape (n_input_samples, n_features)
                containing the input samples.
            n_samples (int): Number of parameter sets to generate.
            seed (int): Random number generator seed.
            kwargs (Any): Additional keyword arguments for the model function.

        Returns:
            np.ndarray: Array of shape (n_input_samples, n_samples)
            containing the fidelities.
        """
        rng = np.random.default_rng(seed)

        # Generate random parameter sets
        # We need two sets of parameters, as we are computing fidelities for a
        # pair of random state vectors
        model.initialize_params(rng=rng, repeat=n_samples * 2)

        # Initialize array to store fidelities
        fidelities: np.ndarray = np.zeros((len(x_samples), n_samples))

        # Compute the fidelity for each pair of input samples and parameters
        for idx, x_sample in enumerate(x_samples):

            # Evaluate the model for the current pair of input samples and parameters
            # Execution type is explicitly set to density
            sv: np.ndarray = model(
                inputs=x_sample,
                params=model.params,
                execution_type="density",
                **kwargs,
            )

            # $\sqrt{\rho}$
            sqrt_sv1: np.ndarray = np.array([sqrtm(m) for m in sv[:n_samples]])

            # $\sqrt{\rho} \sigma \sqrt{\rho}$
            inner_fidelity = sqrt_sv1 @ sv[n_samples:] @ sqrt_sv1

            # Compute the fidelity using the partial trace of the statevector
            fidelity: np.ndarray = (
                np.trace(
                    np.array([sqrtm(m) for m in inner_fidelity]),
                    axis1=1,
                    axis2=2,
                )
                ** 2
            )

            fidelities[idx] = np.abs(fidelity)

        return fidelities

    @staticmethod
    def state_fidelities(
        seed: int,
        n_samples: int,
        n_bins: int,
        model: Model,
        n_input_samples: int = 0,
        input_domain: List[float] = None,
        scale: bool = False,
        **kwargs: Any,
    ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
        """
        Sample the state fidelities and histogram them into a 2D array.

        Args:
            seed (int): Random number generator seed.
            n_samples (int): Number of parameter sets to generate.
            n_bins (int): Number of histogram bins.
            n_input_samples (int): Number of input samples.
            input_domain (List[float]): Input domain.
            model (Callable): Function that models the quantum circuit.
            scale (bool): Whether to scale the number of samples and bins.
            kwargs (Any): Additional keyword arguments for the model function.

        Returns:
            Tuple[np.ndarray, np.ndarray, np.ndarray]: Tuple containing the
                input samples, bin edges, and histogram values.
        """
        if scale:
            n_samples = np.power(2, model.n_qubits) * n_samples
            n_bins = model.n_qubits * n_bins

        if input_domain is None or n_input_samples is None or n_input_samples == 0:
            x = np.zeros((1))
            n_input_samples = 1
        else:
            x = np.linspace(*input_domain, n_input_samples, requires_grad=False)

        fidelities = Expressibility._sample_state_fidelities(
            x_samples=x,
            n_samples=n_samples,
            seed=seed,
            model=model,
            kwargs=kwargs,
        )
        z: np.ndarray = np.zeros((n_input_samples, n_bins))

        y: np.ndarray = np.linspace(0, 1, n_bins + 1)

        for i, f in enumerate(fidelities):
            z[i], _ = np.histogram(f, bins=y)

        z = z / n_samples

        if z.shape[0] == 1:
            z = z.flatten()

        return x, y, z

    @staticmethod
    def _haar_probability(fidelity: float, n_qubits: int) -> float:
        """
        Calculates theoretical probability density function for random Haar states
        as proposed by Sim et al. (https://arxiv.org/abs/1905.10876).

        Args:
            fidelity (float): fidelity of two parameter assignments in [0, 1]
            n_qubits (int): number of qubits in the quantum system

        Returns:
            float: probability for a given fidelity
        """
        N = 2**n_qubits

        prob = (N - 1) * (1 - fidelity) ** (N - 2)
        return prob

    @staticmethod
    def _sample_haar_integral(n_qubits: int, n_bins: int) -> np.ndarray:
        """
        Calculates theoretical probability density function for random Haar states
        as proposed by Sim et al. (https://arxiv.org/abs/1905.10876) and bins it
        into a 2D-histogram.

        Args:
            n_qubits (int): number of qubits in the quantum system
            n_bins (int): number of histogram bins

        Returns:
            np.ndarray: probability distribution for all fidelities
        """
        dist = np.zeros(n_bins)
        for idx in range(n_bins):
            v = idx / n_bins
            u = (idx + 1) / n_bins
            dist[idx], _ = integrate.quad(
                Expressibility._haar_probability, v, u, args=(n_qubits,)
            )

        return dist

    @staticmethod
    def haar_integral(
        n_qubits: int,
        n_bins: int,
        cache: bool = True,
        scale: bool = False,
    ) -> Tuple[np.ndarray, np.ndarray]:
        """
        Calculates theoretical probability density function for random Haar states
        as proposed by Sim et al. (https://arxiv.org/abs/1905.10876) and bins it
        into a 3D-histogram.

        Args:
            n_qubits (int): number of qubits in the quantum system
            n_bins (int): number of histogram bins
            cache (bool): whether to cache the haar integral
            scale (bool): whether to scale the number of bins

        Returns:
            Tuple[np.ndarray, np.ndarray]:
                - x component (bins): the input domain
                - y component (probabilities): the haar probability density
                  funtion for random Haar states
        """
        if scale:
            n_bins = n_qubits * n_bins

        x = np.linspace(0, 1, n_bins)

        if cache:
            name = f"haar_{n_qubits}q_{n_bins}s_{'scaled' if scale else ''}.npy"

            cache_folder = ".cache"
            if not os.path.exists(cache_folder):
                os.mkdir(cache_folder)

            file_path = os.path.join(cache_folder, name)

            if os.path.isfile(file_path):
                y = np.load(file_path)
                return x, y

        y = Expressibility._sample_haar_integral(n_qubits, n_bins)

        if cache:
            np.save(file_path, y)

        return x, y

    @staticmethod
    def kullback_leibler_divergence(
        vqc_prob_dist: np.ndarray,
        haar_dist: np.ndarray,
    ) -> np.ndarray:
        """
        Calculates the KL divergence between two probability distributions (Haar
        probability distribution and the fidelity distribution sampled from a VQC).

        Args:
            vqc_prob_dist (np.ndarray): VQC fidelity probability distribution.
                Should have shape (n_inputs_samples, n_bins)
            haar_dist (np.ndarray): Haar probability distribution with shape.
                Should have shape (n_bins, )

        Returns:
            np.ndarray: Array of KL-Divergence values for all values in axis 1
        """
        if len(vqc_prob_dist.shape) > 1:
            assert all([haar_dist.shape == p.shape for p in vqc_prob_dist]), (
                "All probabilities for inputs should have the same shape as Haar. "
                f"Got {haar_dist.shape} for Haar and {vqc_prob_dist.shape} for VQC"
            )
        else:
            vqc_prob_dist = vqc_prob_dist.reshape((1, -1))

        kl_divergence = np.zeros(vqc_prob_dist.shape[0])
        for idx, p in enumerate(vqc_prob_dist):
            kl_divergence[idx] = np.sum(rel_entr(p, haar_dist))

        return kl_divergence

haar_integral(n_qubits, n_bins, cache=True, scale=False) staticmethod #

Calculates theoretical probability density function for random Haar states as proposed by Sim et al. (https://arxiv.org/abs/1905.10876) and bins it into a 3D-histogram.

Parameters:

Name Type Description Default
n_qubits int

number of qubits in the quantum system

required
n_bins int

number of histogram bins

required
cache bool

whether to cache the haar integral

True
scale bool

whether to scale the number of bins

False

Returns:

Type Description
Tuple[ndarray, ndarray]

Tuple[np.ndarray, np.ndarray]: - x component (bins): the input domain - y component (probabilities): the haar probability density funtion for random Haar states

Source code in qml_essentials/expressibility.py
@staticmethod
def haar_integral(
    n_qubits: int,
    n_bins: int,
    cache: bool = True,
    scale: bool = False,
) -> Tuple[np.ndarray, np.ndarray]:
    """
    Calculates theoretical probability density function for random Haar states
    as proposed by Sim et al. (https://arxiv.org/abs/1905.10876) and bins it
    into a 3D-histogram.

    Args:
        n_qubits (int): number of qubits in the quantum system
        n_bins (int): number of histogram bins
        cache (bool): whether to cache the haar integral
        scale (bool): whether to scale the number of bins

    Returns:
        Tuple[np.ndarray, np.ndarray]:
            - x component (bins): the input domain
            - y component (probabilities): the haar probability density
              funtion for random Haar states
    """
    if scale:
        n_bins = n_qubits * n_bins

    x = np.linspace(0, 1, n_bins)

    if cache:
        name = f"haar_{n_qubits}q_{n_bins}s_{'scaled' if scale else ''}.npy"

        cache_folder = ".cache"
        if not os.path.exists(cache_folder):
            os.mkdir(cache_folder)

        file_path = os.path.join(cache_folder, name)

        if os.path.isfile(file_path):
            y = np.load(file_path)
            return x, y

    y = Expressibility._sample_haar_integral(n_qubits, n_bins)

    if cache:
        np.save(file_path, y)

    return x, y

kullback_leibler_divergence(vqc_prob_dist, haar_dist) staticmethod #

Calculates the KL divergence between two probability distributions (Haar probability distribution and the fidelity distribution sampled from a VQC).

Parameters:

Name Type Description Default
vqc_prob_dist ndarray

VQC fidelity probability distribution. Should have shape (n_inputs_samples, n_bins)

required
haar_dist ndarray

Haar probability distribution with shape. Should have shape (n_bins, )

required

Returns:

Type Description
ndarray

np.ndarray: Array of KL-Divergence values for all values in axis 1

Source code in qml_essentials/expressibility.py
@staticmethod
def kullback_leibler_divergence(
    vqc_prob_dist: np.ndarray,
    haar_dist: np.ndarray,
) -> np.ndarray:
    """
    Calculates the KL divergence between two probability distributions (Haar
    probability distribution and the fidelity distribution sampled from a VQC).

    Args:
        vqc_prob_dist (np.ndarray): VQC fidelity probability distribution.
            Should have shape (n_inputs_samples, n_bins)
        haar_dist (np.ndarray): Haar probability distribution with shape.
            Should have shape (n_bins, )

    Returns:
        np.ndarray: Array of KL-Divergence values for all values in axis 1
    """
    if len(vqc_prob_dist.shape) > 1:
        assert all([haar_dist.shape == p.shape for p in vqc_prob_dist]), (
            "All probabilities for inputs should have the same shape as Haar. "
            f"Got {haar_dist.shape} for Haar and {vqc_prob_dist.shape} for VQC"
        )
    else:
        vqc_prob_dist = vqc_prob_dist.reshape((1, -1))

    kl_divergence = np.zeros(vqc_prob_dist.shape[0])
    for idx, p in enumerate(vqc_prob_dist):
        kl_divergence[idx] = np.sum(rel_entr(p, haar_dist))

    return kl_divergence

state_fidelities(seed, n_samples, n_bins, model, n_input_samples=0, input_domain=None, scale=False, **kwargs) staticmethod #

Sample the state fidelities and histogram them into a 2D array.

Parameters:

Name Type Description Default
seed int

Random number generator seed.

required
n_samples int

Number of parameter sets to generate.

required
n_bins int

Number of histogram bins.

required
n_input_samples int

Number of input samples.

0
input_domain List[float]

Input domain.

None
model Callable

Function that models the quantum circuit.

required
scale bool

Whether to scale the number of samples and bins.

False
kwargs Any

Additional keyword arguments for the model function.

{}

Returns:

Type Description
Tuple[ndarray, ndarray, ndarray]

Tuple[np.ndarray, np.ndarray, np.ndarray]: Tuple containing the input samples, bin edges, and histogram values.

Source code in qml_essentials/expressibility.py
@staticmethod
def state_fidelities(
    seed: int,
    n_samples: int,
    n_bins: int,
    model: Model,
    n_input_samples: int = 0,
    input_domain: List[float] = None,
    scale: bool = False,
    **kwargs: Any,
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
    """
    Sample the state fidelities and histogram them into a 2D array.

    Args:
        seed (int): Random number generator seed.
        n_samples (int): Number of parameter sets to generate.
        n_bins (int): Number of histogram bins.
        n_input_samples (int): Number of input samples.
        input_domain (List[float]): Input domain.
        model (Callable): Function that models the quantum circuit.
        scale (bool): Whether to scale the number of samples and bins.
        kwargs (Any): Additional keyword arguments for the model function.

    Returns:
        Tuple[np.ndarray, np.ndarray, np.ndarray]: Tuple containing the
            input samples, bin edges, and histogram values.
    """
    if scale:
        n_samples = np.power(2, model.n_qubits) * n_samples
        n_bins = model.n_qubits * n_bins

    if input_domain is None or n_input_samples is None or n_input_samples == 0:
        x = np.zeros((1))
        n_input_samples = 1
    else:
        x = np.linspace(*input_domain, n_input_samples, requires_grad=False)

    fidelities = Expressibility._sample_state_fidelities(
        x_samples=x,
        n_samples=n_samples,
        seed=seed,
        model=model,
        kwargs=kwargs,
    )
    z: np.ndarray = np.zeros((n_input_samples, n_bins))

    y: np.ndarray = np.linspace(0, 1, n_bins + 1)

    for i, f in enumerate(fidelities):
        z[i], _ = np.histogram(f, bins=y)

    z = z / n_samples

    if z.shape[0] == 1:
        z = z.flatten()

    return x, y, z

Coefficients#

from qml_essentials.coefficients import Coefficients
Source code in qml_essentials/coefficients.py
class Coefficients:

    @staticmethod
    def get_spectrum(
        model: Model,
        mfs: int = 1,
        mts: int = 1,
        shift=False,
        trim=False,
        **kwargs,
    ) -> np.ndarray:
        """
        Extracts the coefficients of a given model using a FFT (np-fft).

        Note that the coefficients are complex numbers, but the imaginary part
        of the coefficients should be very close to zero, since the expectation
        values of the Pauli operators are real numbers.

        It can perform oversampling in both the frequency and time domain
        using the `mfs` and `mts` arguments.

        Args:
            model (Model): The model to sample.
            mfs (int): Multiplicator for the highest frequency. Default is 2.
            mts (int): Multiplicator for the number of time samples. Default is 1.
            shift (bool): Whether to apply np-fftshift. Default is False.
            trim (bool): Whether to remove the Nyquist frequency if spectrum is even.
                Default is False.
            kwargs (Any): Additional keyword arguments for the model function.

        Returns:
            np.ndarray: The sampled Fourier coefficients.
        """
        kwargs.setdefault("force_mean", True)
        kwargs.setdefault("execution_type", "expval")

        coeffs, freqs = Coefficients._fourier_transform(
            model, mfs=mfs, mts=mts, **kwargs
        )

        if not np.isclose(np.sum(coeffs).imag, 0.0, rtol=1.0e-5):
            raise ValueError(
                f"Spectrum is not real. Imaginary part of coefficients is:\
                {np.sum(coeffs).imag}"
            )

        if trim:
            for ax in range(len(coeffs.shape) - 1):
                if coeffs.shape[ax] % 2 == 0:
                    coeffs = np.delete(coeffs, len(coeffs) // 2, axis=ax)
                    freqs = np.delete(freqs, len(freqs) // 2, axis=ax)

        if shift:
            return np.fft.fftshift(
                coeffs, axes=list(range(model.n_input_feat))
            ), np.fft.fftshift(freqs)
        else:
            return coeffs, freqs

    @staticmethod
    def _fourier_transform(
        model: Model, mfs: int, mts: int, **kwargs: Any
    ) -> np.ndarray:
        # Create a frequency vector with as many frequencies as model degrees,
        # oversampled by nfs
        n_freqs: int = 2 * mfs * model.degree + 1

        start, stop, step = 0, 2 * mts * np.pi, 2 * np.pi / n_freqs
        # Stretch according to the number of frequencies
        inputs: np.ndarray = np.arange(start, stop, step) % (2 * np.pi)

        # permute with input dimensionality
        nd_inputs = np.array(np.meshgrid(*[inputs] * model.n_input_feat)).T.reshape(
            -1, model.n_input_feat
        )

        # Output vector is not necessarily the same length as input
        outputs = model(inputs=nd_inputs, **kwargs)
        outputs = outputs.reshape(*(inputs.shape * model.n_input_feat), -1).squeeze()

        coeffs = np.fft.fftn(outputs, axes=list(range(model.n_input_feat)))

        # assert (
        #     mts * n_freqs,
        # ) * model.n_input_feat == coeffs.shape, f"Expected shape\
        # {(mts * n_freqs,) * model.n_input_feat} but got {coeffs.shape}"

        freqs = np.fft.fftfreq(mts * n_freqs, 1 / n_freqs)

        # TODO: this could cause issues with multidim input
        # FIXME: account for different frequencies in multidim input scenarios
        # Run the fft and rearrange +
        # normalize the output (using product if multidim)
        return (
            coeffs / np.prod(outputs.shape[0 : model.n_input_feat]),
            freqs,
            # np.repeat(freqs[:, np.newaxis], model.n_input_feat, axis=1).squeeze(),
        )

    @staticmethod
    def get_psd(coeffs: np.ndarray) -> np.ndarray:
        """
        Calculates the power spectral density (PSD) from given Fourier coefficients.

        Args:
            coeffs (np.ndarray): The Fourier coefficients.

        Returns:
            np.ndarray: The power spectral density.
        """
        # TODO: if we apply trim=True in advance, this will be slightly wrong..

        def abs2(x):
            return x.real**2 + x.imag**2

        scale = 2.0 / (len(coeffs) ** 2)
        return scale * abs2(coeffs)

    @staticmethod
    def evaluate_Fourier_series(
        coefficients: np.ndarray,
        frequencies: np.ndarray,
        inputs: Union[np.ndarray, list, float],
    ) -> float:
        """
        Evaluate the function value of a Fourier series at one point.

        Args:
            coefficients (np.ndarray): Coefficients of the Fourier series.
            frequencies (np.ndarray): Corresponding frequencies.
            inputs (np.ndarray): Point at which to evaluate the function.
        Returns:
            float: The function value at the input point.
        """
        dims = len(coefficients.shape)

        if not isinstance(inputs, (np.ndarray, list)):
            inputs = [inputs]

        frequencies = np.stack(np.meshgrid(*[frequencies] * dims)).T.reshape(-1, dims)
        freq_inputs = np.einsum("...j,j->...", frequencies, inputs)
        coeffs = coefficients.flatten()
        freq_inputs = freq_inputs.flatten()

        exp = 0.0
        for omega_x, c in zip(freq_inputs, coeffs):
            exp += c * np.exp(1j * omega_x)

        return np.real_if_close(exp)

evaluate_Fourier_series(coefficients, frequencies, inputs) staticmethod #

Evaluate the function value of a Fourier series at one point.

Parameters:

Name Type Description Default
coefficients ndarray

Coefficients of the Fourier series.

required
frequencies ndarray

Corresponding frequencies.

required
inputs ndarray

Point at which to evaluate the function.

required

Returns: float: The function value at the input point.

Source code in qml_essentials/coefficients.py
@staticmethod
def evaluate_Fourier_series(
    coefficients: np.ndarray,
    frequencies: np.ndarray,
    inputs: Union[np.ndarray, list, float],
) -> float:
    """
    Evaluate the function value of a Fourier series at one point.

    Args:
        coefficients (np.ndarray): Coefficients of the Fourier series.
        frequencies (np.ndarray): Corresponding frequencies.
        inputs (np.ndarray): Point at which to evaluate the function.
    Returns:
        float: The function value at the input point.
    """
    dims = len(coefficients.shape)

    if not isinstance(inputs, (np.ndarray, list)):
        inputs = [inputs]

    frequencies = np.stack(np.meshgrid(*[frequencies] * dims)).T.reshape(-1, dims)
    freq_inputs = np.einsum("...j,j->...", frequencies, inputs)
    coeffs = coefficients.flatten()
    freq_inputs = freq_inputs.flatten()

    exp = 0.0
    for omega_x, c in zip(freq_inputs, coeffs):
        exp += c * np.exp(1j * omega_x)

    return np.real_if_close(exp)

get_psd(coeffs) staticmethod #

Calculates the power spectral density (PSD) from given Fourier coefficients.

Parameters:

Name Type Description Default
coeffs ndarray

The Fourier coefficients.

required

Returns:

Type Description
ndarray

np.ndarray: The power spectral density.

Source code in qml_essentials/coefficients.py
@staticmethod
def get_psd(coeffs: np.ndarray) -> np.ndarray:
    """
    Calculates the power spectral density (PSD) from given Fourier coefficients.

    Args:
        coeffs (np.ndarray): The Fourier coefficients.

    Returns:
        np.ndarray: The power spectral density.
    """
    # TODO: if we apply trim=True in advance, this will be slightly wrong..

    def abs2(x):
        return x.real**2 + x.imag**2

    scale = 2.0 / (len(coeffs) ** 2)
    return scale * abs2(coeffs)

get_spectrum(model, mfs=1, mts=1, shift=False, trim=False, **kwargs) staticmethod #

Extracts the coefficients of a given model using a FFT (np-fft).

Note that the coefficients are complex numbers, but the imaginary part of the coefficients should be very close to zero, since the expectation values of the Pauli operators are real numbers.

It can perform oversampling in both the frequency and time domain using the mfs and mts arguments.

Parameters:

Name Type Description Default
model Model

The model to sample.

required
mfs int

Multiplicator for the highest frequency. Default is 2.

1
mts int

Multiplicator for the number of time samples. Default is 1.

1
shift bool

Whether to apply np-fftshift. Default is False.

False
trim bool

Whether to remove the Nyquist frequency if spectrum is even. Default is False.

False
kwargs Any

Additional keyword arguments for the model function.

{}

Returns:

Type Description
ndarray

np.ndarray: The sampled Fourier coefficients.

Source code in qml_essentials/coefficients.py
@staticmethod
def get_spectrum(
    model: Model,
    mfs: int = 1,
    mts: int = 1,
    shift=False,
    trim=False,
    **kwargs,
) -> np.ndarray:
    """
    Extracts the coefficients of a given model using a FFT (np-fft).

    Note that the coefficients are complex numbers, but the imaginary part
    of the coefficients should be very close to zero, since the expectation
    values of the Pauli operators are real numbers.

    It can perform oversampling in both the frequency and time domain
    using the `mfs` and `mts` arguments.

    Args:
        model (Model): The model to sample.
        mfs (int): Multiplicator for the highest frequency. Default is 2.
        mts (int): Multiplicator for the number of time samples. Default is 1.
        shift (bool): Whether to apply np-fftshift. Default is False.
        trim (bool): Whether to remove the Nyquist frequency if spectrum is even.
            Default is False.
        kwargs (Any): Additional keyword arguments for the model function.

    Returns:
        np.ndarray: The sampled Fourier coefficients.
    """
    kwargs.setdefault("force_mean", True)
    kwargs.setdefault("execution_type", "expval")

    coeffs, freqs = Coefficients._fourier_transform(
        model, mfs=mfs, mts=mts, **kwargs
    )

    if not np.isclose(np.sum(coeffs).imag, 0.0, rtol=1.0e-5):
        raise ValueError(
            f"Spectrum is not real. Imaginary part of coefficients is:\
            {np.sum(coeffs).imag}"
        )

    if trim:
        for ax in range(len(coeffs.shape) - 1):
            if coeffs.shape[ax] % 2 == 0:
                coeffs = np.delete(coeffs, len(coeffs) // 2, axis=ax)
                freqs = np.delete(freqs, len(freqs) // 2, axis=ax)

    if shift:
        return np.fft.fftshift(
            coeffs, axes=list(range(model.n_input_feat))
        ), np.fft.fftshift(freqs)
    else:
        return coeffs, freqs