References
Ansaetze#
Source code in qml_essentials/ansaetze.py
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 |
|
Circuit_1
#
Bases: Circuit
Source code in qml_essentials/ansaetze.py
build(w, n_qubits, noise_params=None)
staticmethod
#
Creates a Circuit1 ansatz.
Length of flattened vector must be n_qubits*2
Parameters#
w : np.ndarray Weight vector of size n_qubits*2 n_qubits : int Number of qubits noise_params : Optional[Dict[str, float]], optional Dictionary of noise parameters to apply to the gates
Source code in qml_essentials/ansaetze.py
get_control_indices(n_qubits)
staticmethod
#
No controlled rotation gates available. Always None.
Parameters#
n_qubits : int Number of qubits in the circuit
Returns#
Optional[np.ndarray] List of all controlled indices, or None if the circuit does not contain controlled rotation gates.
Source code in qml_essentials/ansaetze.py
n_params_per_layer(n_qubits)
staticmethod
#
Returns the number of parameters per layer for Circuit_1.
The total number of parameters is determined by the number of qubits, with each qubit contributing 2 parameters.
Parameters#
n_qubits : int Number of qubits in the circuit
Returns#
int Number of parameters per layer
Source code in qml_essentials/ansaetze.py
Circuit_10
#
Bases: Circuit
Source code in qml_essentials/ansaetze.py
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 |
|
build(w, n_qubits, noise_params=None)
staticmethod
#
Creates a Circuit10 ansatz.
Length of flattened vector must be n_qubits*2
Parameters#
w : np.ndarray Weight vector of size n_qubits*2 n_qubits : int Number of qubits noise_params : Optional[Dict[str, float]], optional Dictionary of noise parameters to apply to the gates
Source code in qml_essentials/ansaetze.py
get_control_indices(n_qubits)
staticmethod
#
No controlled rotation gates available. Always None.
Parameters#
n_qubits : int Number of qubits in the circuit
Returns#
Optional[np.ndarray] List of all controlled indices, or None if the circuit does not contain controlled rotation gates.
Source code in qml_essentials/ansaetze.py
n_params_per_layer(n_qubits)
staticmethod
#
Returns the number of parameters per layer for the Circuit_10 ansatz.
The number of parameters is calculated as n_qubits*2.
Parameters#
n_qubits : int Number of qubits in the circuit
Returns#
int Number of parameters per layer
Source code in qml_essentials/ansaetze.py
Circuit_15
#
Bases: Circuit
Source code in qml_essentials/ansaetze.py
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 |
|
build(w, n_qubits, noise_params=None)
staticmethod
#
Creates a Circuit15 ansatz.
Length of flattened vector must be n_qubits*2 because for >1 qubits there are three gates
Parameters#
w : np.ndarray Weight vector of size n_qubits*2 n_qubits : int Number of qubits noise_params : Optional[Dict[str, float]], optional Dictionary of noise parameters to apply to the gates
Source code in qml_essentials/ansaetze.py
get_control_indices(n_qubits)
staticmethod
#
No controlled rotation gates available. Always None.
Parameters#
n_qubits : int Number of qubits in the circuit
Returns#
Optional[np.ndarray] List of all controlled indices, or None if the circuit does not contain controlled rotation gates.
Source code in qml_essentials/ansaetze.py
n_params_per_layer(n_qubits)
staticmethod
#
Returns the number of parameters per layer for Circuit_15.
The number of parameters is 2 times the number of qubits. A warning is logged if the number of qubits is less than 2.
Parameters#
n_qubits : int Number of qubits in the circuit
Returns#
int Number of parameters required for one layer of the circuit
Source code in qml_essentials/ansaetze.py
Circuit_16
#
Bases: Circuit
Source code in qml_essentials/ansaetze.py
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 |
|
build(w, n_qubits, noise_params=None)
staticmethod
#
Creates a Circuit16 ansatz.
Length of flattened vector must be n_qubits*3-1
Parameters#
w : np.ndarray Weight vector of size n_qubits*3-1 n_qubits : int Number of qubits noise_params : Optional[Dict[str, float]], optional Dictionary of noise parameters to apply to the gates
Source code in qml_essentials/ansaetze.py
get_control_indices(n_qubits)
staticmethod
#
No controlled rotation gates available. Always None.
Parameters#
n_qubits : int Number of qubits in the circuit
Returns#
Optional[np.ndarray] List of all controlled indices, or None if the circuit does not contain controlled rotation gates.
Source code in qml_essentials/ansaetze.py
n_params_per_layer(n_qubits)
staticmethod
#
Returns the number of parameters per layer for the Circuit_16 ansatz.
The number of parameters is calculated as n_qubits*3-1.
Parameters#
n_qubits : int Number of qubits in the circuit
Returns#
int Number of parameters per layer
Source code in qml_essentials/ansaetze.py
Circuit_17
#
Bases: Circuit
Source code in qml_essentials/ansaetze.py
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 |
|
build(w, n_qubits, noise_params=None)
staticmethod
#
Creates a Circuit17 ansatz.
Length of flattened vector must be n_qubits*3-1
Parameters#
w : np.ndarray Weight vector of size n_qubits*3-1 n_qubits : int Number of qubits noise_params : Optional[Dict[str, float]], optional Dictionary of noise parameters to apply to the gates
Source code in qml_essentials/ansaetze.py
get_control_indices(n_qubits)
staticmethod
#
No controlled rotation gates available. Always None.
Parameters#
n_qubits : int Number of qubits in the circuit
Returns#
Optional[np.ndarray] List of all controlled indices, or None if the circuit does not contain controlled rotation gates.
Source code in qml_essentials/ansaetze.py
n_params_per_layer(n_qubits)
staticmethod
#
Returns the number of parameters per layer for the Circuit_17 ansatz.
The number of parameters is calculated as n_qubits*3-1.
Parameters#
n_qubits : int Number of qubits in the circuit
Returns#
int Number of parameters per layer
Source code in qml_essentials/ansaetze.py
Circuit_18
#
Bases: Circuit
Source code in qml_essentials/ansaetze.py
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 |
|
build(w, n_qubits, noise_params=None)
staticmethod
#
Creates a Circuit18 ansatz.
Length of flattened vector must be n_qubits*3
Parameters#
w : np.ndarray Weight vector of size n_qubits*3 n_qubits : int Number of qubits noise_params : Optional[Dict[str, float]], optional Dictionary of noise parameters to apply to the gates
Source code in qml_essentials/ansaetze.py
get_control_indices(n_qubits)
staticmethod
#
Returns the indices for the controlled rotation gates for one layer. Indices should slice the list of all parameters for one layer as follows: [indices[0]:indices[1]:indices[2]]
Parameters#
n_qubits : int Number of qubits in the circuit
Returns#
Optional[np.ndarray] List of all controlled indices, or None if the circuit does not contain controlled rotation gates.
Source code in qml_essentials/ansaetze.py
n_params_per_layer(n_qubits)
staticmethod
#
Returns the number of parameters per layer for Circuit_18.
The number of parameters is 3 times the number of qubits when there is more than one qubit, as each qubit contributes 3 parameters. If the number of qubits is less than 2, a warning is logged since no entanglement is possible, and a fixed number of 2 parameters is used.
Parameters#
n_qubits : int Number of qubits in the circuit
Returns#
int Number of parameters required for one layer of the circuit
Source code in qml_essentials/ansaetze.py
Circuit_19
#
Bases: Circuit
Source code in qml_essentials/ansaetze.py
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 |
|
build(w, n_qubits, noise_params=None)
staticmethod
#
Creates a Circuit19 ansatz.
Length of flattened vector must be n_qubits*3 because for >1 qubits there are three gates
Parameters#
w : np.ndarray Weight vector of size n_qubits*3 n_qubits : int Number of qubits noise_params : Optional[Dict[str, float]], optional Dictionary of noise parameters to apply to the gates
Source code in qml_essentials/ansaetze.py
get_control_indices(n_qubits)
staticmethod
#
Returns the indices for the controlled rotation gates for one layer. Indices should slice the list of all parameters for one layer as follows: [indices[0]:indices[1]:indices[2]]
Parameters#
n_qubits : int Number of qubits in the circuit
Returns#
Optional[np.ndarray] List of all controlled indices, or None if the circuit does not contain controlled rotation gates.
Source code in qml_essentials/ansaetze.py
n_params_per_layer(n_qubits)
staticmethod
#
Returns the number of parameters per layer for Circuit_19.
The number of parameters is 3 times the number of qubits when there is more than one qubit, as each qubit contributes 3 parameters. If the number of qubits is less than 2, a warning is logged since no entanglement is possible, and a fixed number of 2 parameters is used.
Parameters#
n_qubits : int Number of qubits in the circuit
Returns#
int Number of parameters required for one layer of the circuit
Source code in qml_essentials/ansaetze.py
Circuit_2
#
Bases: Circuit
Source code in qml_essentials/ansaetze.py
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 |
|
build(w, n_qubits, noise_params=None)
staticmethod
#
Creates a Circuit2 ansatz.
Length of flattened vector must be n_qubits*2
Parameters#
w : np.ndarray Weight vector of size n_qubits*2 n_qubits : int Number of qubits noise_params : Optional[Dict[str, float]], optional Dictionary of noise parameters to apply to the gates
Source code in qml_essentials/ansaetze.py
get_control_indices(n_qubits)
staticmethod
#
No controlled rotation gates available. Always None.
Parameters#
n_qubits : int Number of qubits in the circuit
Returns#
Optional[np.ndarray] List of all controlled indices, or None if the circuit does not contain controlled rotation gates.
Source code in qml_essentials/ansaetze.py
n_params_per_layer(n_qubits)
staticmethod
#
Returns the number of parameters per layer for Circuit_2.
The total number of parameters is determined by the number of qubits, with each qubit contributing 2 parameters.
Parameters#
n_qubits : int Number of qubits in the circuit
Returns#
int Number of parameters per layer
Source code in qml_essentials/ansaetze.py
Circuit_3
#
Bases: Circuit
Source code in qml_essentials/ansaetze.py
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 |
|
build(w, n_qubits, noise_params=None)
staticmethod
#
Creates a Circuit3 ansatz.
Length of flattened vector must be n_qubits*3-1
Parameters#
w : np.ndarray Weight vector of size n_qubits*3-1 n_qubits : int Number of qubits noise_params : Optional[Dict[str, float]], optional Dictionary of noise parameters to apply to the gates
Source code in qml_essentials/ansaetze.py
get_control_indices(n_qubits)
staticmethod
#
No controlled rotation gates available. Always None.
Parameters#
n_qubits : int Number of qubits in the circuit
Returns#
Optional[np.ndarray] List of all controlled indices, or None if the circuit does not contain controlled rotation gates.
Source code in qml_essentials/ansaetze.py
n_params_per_layer(n_qubits)
staticmethod
#
Calculates the number of parameters per layer for Circuit3.
The number of parameters per layer is given by the number of qubits, with each qubit contributing 3 parameters. The last qubit only contributes 2 parameters because it is the target qubit for the controlled gates.
Parameters#
n_qubits : int Number of qubits in the circuit
Returns#
int Number of parameters per layer
Source code in qml_essentials/ansaetze.py
Circuit_4
#
Bases: Circuit
Source code in qml_essentials/ansaetze.py
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 |
|
build(w, n_qubits, noise_params=None)
staticmethod
#
Creates a Circuit4 ansatz.
Length of flattened vector must be n_qubits*3-1
Parameters#
w : np.ndarray Weight vector of size n_qubits*3-1 n_qubits : int Number of qubits noise_params : Optional[Dict[str, float]], optional Dictionary of noise parameters to apply to the gates
Source code in qml_essentials/ansaetze.py
get_control_indices(n_qubits)
staticmethod
#
No controlled rotation gates available. Always None.
Parameters#
n_qubits : int Number of qubits in the circuit
Returns#
Optional[np.ndarray] List of all controlled indices, or None if the circuit does not contain controlled rotation gates.
Source code in qml_essentials/ansaetze.py
n_params_per_layer(n_qubits)
staticmethod
#
Returns the number of parameters per layer for the Circuit_4 ansatz.
The number of parameters is calculated as n_qubits*3-1.
Parameters#
n_qubits : int Number of qubits in the circuit
Returns#
int Number of parameters per layer
Source code in qml_essentials/ansaetze.py
Circuit_6
#
Bases: Circuit
Source code in qml_essentials/ansaetze.py
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 |
|
build(w, n_qubits, noise_params=None)
staticmethod
#
Creates a Circuit6 ansatz.
Length of flattened vector must be n_qubits4+n_qubits(n_qubits-1) = n_qubits3+n_qubits*2
Parameters#
w : np.ndarray Weight vector of size n_layers(n_qubits3+n_qubits**2) n_qubits : int Number of qubits noise_params : Optional[Dict[str, float]], optional Dictionary of noise parameters to apply to the gates
Source code in qml_essentials/ansaetze.py
get_control_indices(n_qubits)
staticmethod
#
Returns the indices for the controlled rotation gates for one layer. Indices should slice the list of all parameters for one layer as follows: [indices[0]:indices[1]:indices[2]]
Parameters#
n_qubits : int Number of qubits in the circuit
Returns#
Optional[np.ndarray] List of all controlled indices, or None if the circuit does not contain controlled rotation gates.
Source code in qml_essentials/ansaetze.py
n_params_per_layer(n_qubits)
staticmethod
#
Returns the number of parameters per layer for Circuit_6.
The total number of parameters is n_qubits3+n_qubits2, which is the number of rotations n_qubits3 plus the number of entangling gates n_qubits**2.
If n_qubits is 1, the number of parameters is 4, and a warning is logged since no entanglement is possible.
Parameters#
n_qubits : int Number of qubits
Returns#
int Number of parameters per layer
Source code in qml_essentials/ansaetze.py
Circuit_9
#
Bases: Circuit
Source code in qml_essentials/ansaetze.py
build(w, n_qubits, noise_params=None)
staticmethod
#
Creates a Circuit9 ansatz.
Length of flattened vector must be n_qubits
Parameters#
w : np.ndarray Weight vector of size n_qubits n_qubits : int Number of qubits noise_params : Optional[Dict[str, float]], optional Dictionary of noise parameters to apply to the gates
Source code in qml_essentials/ansaetze.py
get_control_indices(n_qubits)
staticmethod
#
No controlled rotation gates available. Always None.
Parameters#
n_qubits : int Number of qubits in the circuit
Returns#
Optional[np.ndarray] List of all controlled indices, or None if the circuit does not contain controlled rotation gates.
Source code in qml_essentials/ansaetze.py
n_params_per_layer(n_qubits)
staticmethod
#
Returns the number of parameters per layer for Circuit_9.
The number of parameters is equal to the number of qubits.
Parameters#
n_qubits : int Number of qubits in the circuit
Returns#
int Number of parameters required for one layer of the circuit
Source code in qml_essentials/ansaetze.py
Hardware_Efficient
#
Bases: Circuit
Source code in qml_essentials/ansaetze.py
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 |
|
build(w, n_qubits, noise_params=None)
staticmethod
#
Creates a Hardware-Efficient ansatz, as proposed in https://arxiv.org/pdf/2309.03279
Parameters#
w : np.ndarray Weight vector of size n_qubits*3 n_qubits : int Number of qubits noise_params : Optional[Dict[str, float]], optional Dictionary of noise parameters to apply to the gates
Source code in qml_essentials/ansaetze.py
get_control_indices(n_qubits)
staticmethod
#
No controlled rotation gates available. Always None.
Parameters#
n_qubits : int Number of qubits in the circuit
Returns#
Optional[np.ndarray] List of all controlled indices, or None if the circuit does not contain controlled rotation gates.
Source code in qml_essentials/ansaetze.py
n_params_per_layer(n_qubits)
staticmethod
#
Returns the number of parameters per layer for the Hardware Efficient Ansatz.
The number of parameters is 3 times the number of qubits when there is more than one qubit, as each qubit contributes 3 parameters. If the number of qubits is less than 2, a warning is logged since no entanglement is possible, and a fixed number of 2 parameters is used.
Parameters#
n_qubits : int Number of qubits in the circuit
Returns#
int Number of parameters required for one layer of the circuit
Source code in qml_essentials/ansaetze.py
No_Entangling
#
Bases: Circuit
Source code in qml_essentials/ansaetze.py
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 |
|
build(w, n_qubits, noise_params=None)
staticmethod
#
Creates a circuit without entangling, but with U3 gates on all qubits
Length of flattened vector must be n_qubits*3
Parameters#
w : np.ndarray Weight vector of size n_qubits*3 n_qubits : int Number of qubits noise_params : Optional[Dict[str, float]], optional Dictionary of noise parameters to apply to the gates
Source code in qml_essentials/ansaetze.py
get_control_indices(n_qubits)
staticmethod
#
No controlled rotation gates available. Always None.
Parameters#
n_qubits : int Number of qubits in the circuit
Returns#
Optional[np.ndarray] List of all controlled indices, or None if the circuit does not contain controlled rotation gates.
Source code in qml_essentials/ansaetze.py
n_params_per_layer(n_qubits)
staticmethod
#
Returns the number of parameters per layer for the NoEntangling ansatz.
The number of parameters is calculated as n_qubits*3.
Parameters#
n_qubits : int Number of qubits in the circuit
Returns#
int Number of parameters per layer
Source code in qml_essentials/ansaetze.py
Strongly_Entangling
#
Bases: Circuit
Source code in qml_essentials/ansaetze.py
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 |
|
build(w, n_qubits, noise_params=None)
staticmethod
#
Creates a Strongly Entangling ansatz.
Length of flattened vector must be n_qubits*6
Parameters#
w : np.ndarray Weight vector of size n_qubits*6 n_qubits : int Number of qubits noise_params : Optional[Dict[str, float]], optional Dictionary of noise parameters to apply to the gates
Source code in qml_essentials/ansaetze.py
get_control_indices(n_qubits)
staticmethod
#
No controlled rotation gates available. Always None.
Parameters#
n_qubits : int Number of qubits in the circuit
Returns#
Optional[np.ndarray] List of all controlled indices, or None if the circuit does not contain controlled rotation gates.
Source code in qml_essentials/ansaetze.py
n_params_per_layer(n_qubits)
staticmethod
#
Returns the number of parameters per layer for the Strongly Entangling ansatz.
The number of parameters is calculated as n_qubits*6.
Parameters#
n_qubits : int Number of qubits in the circuit
Returns#
int Number of parameters per layer
Source code in qml_essentials/ansaetze.py
Gates#
Source code in qml_essentials/ansaetze.py
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
|
CRX(w, wires, noise_params=None)
staticmethod
#
Applies a controlled rotation around the X axis to the given wires
and adds Noise
Parameters#
w : float The rotation angle in radians. wires : Union[int, List[int]] The wire(s) to apply the controlled rotation gate to. noise_params : Optional[Dict[str, float]] A dictionary of noise parameters. The following noise gates are supported: -BitFlip: Applies a bit flip error to the given wires. -PhaseFlip: Applies a phase flip error to the given wires. -Depolarizing: Applies a depolarizing channel error to the given wires.
All parameters are optional and default to 0.0 if not provided.
Source code in qml_essentials/ansaetze.py
CRY(w, wires, noise_params=None)
staticmethod
#
Applies a controlled rotation around the Y axis to the given wires
and adds Noise
Parameters#
w : float The rotation angle in radians. wires : Union[int, List[int]] The wire(s) to apply the controlled rotation gate to. noise_params : Optional[Dict[str, float]] A dictionary of noise parameters. The following noise gates are supported: -BitFlip: Applies a bit flip error to the given wires. -PhaseFlip: Applies a phase flip error to the given wires. -Depolarizing: Applies a depolarizing channel error to the given wires.
All parameters are optional and default to 0.0 if not provided.
Source code in qml_essentials/ansaetze.py
CRZ(w, wires, noise_params=None)
staticmethod
#
Applies a controlled rotation around the Z axis to the given wires
and adds Noise
Parameters#
w : float The rotation angle in radians. wires : Union[int, List[int]] The wire(s) to apply the controlled rotation gate to. noise_params : Optional[Dict[str, float]] A dictionary of noise parameters. The following noise gates are supported: -BitFlip: Applies a bit flip error to the given wires. -PhaseFlip: Applies a phase flip error to the given wires. -Depolarizing: Applies a depolarizing channel error to the given wires.
All parameters are optional and default to 0.0 if not provided.
Source code in qml_essentials/ansaetze.py
CX(wires, noise_params=None)
staticmethod
#
Applies a controlled NOT gate to the given wires and adds Noise
Parameters#
wires : Union[int, List[int]] The wire(s) to apply the controlled NOT gate to. noise_params : Optional[Dict[str, float]] A dictionary of noise parameters. The following noise gates are supported: -BitFlip: Applies a bit flip error to the given wires. -PhaseFlip: Applies a phase flip error to the given wires. -Depolarizing: Applies a depolarizing channel error to the given wires.
All parameters are optional and default to 0.0 if not provided.
Source code in qml_essentials/ansaetze.py
CY(wires, noise_params=None)
staticmethod
#
Applies a controlled Y gate to the given wires and adds Noise
Parameters#
wires : Union[int, List[int]] The wire(s) to apply the controlled Y gate to. noise_params : Optional[Dict[str, float]] A dictionary of noise parameters. The following noise gates are supported: -BitFlip: Applies a bit flip error to the given wires. -PhaseFlip: Applies a phase flip error to the given wires. -Depolarizing: Applies a depolarizing channel error to the given wires.
All parameters are optional and default to 0.0 if not provided.
Source code in qml_essentials/ansaetze.py
CZ(wires, noise_params=None)
staticmethod
#
Applies a controlled Z gate to the given wires and adds Noise
Parameters#
wires : Union[int, List[int]] The wire(s) to apply the controlled Z gate to. noise_params : Optional[Dict[str, float]] A dictionary of noise parameters. The following noise gates are supported: -BitFlip: Applies a bit flip error to the given wires. -PhaseFlip: Applies a phase flip error to the given wires. -Depolarizing: Applies a depolarizing channel error to the given wires.
All parameters are optional and default to 0.0 if not provided.
Source code in qml_essentials/ansaetze.py
GateError(w, noise_params=None)
staticmethod
#
Applies a gate error to the given rotation angle(s).
Parameters#
w : np.ndarray The rotation angle(s) in radians. noise_params : Optional[Dict[str, float]] A dictionary of noise parameters. The following noise gates are supported: -GateError: Applies a normal distribution error to the rotation angle(s). The standard deviation of the noise is specified by the "GateError" key in the dictionary.
All parameters are optional and default to 0.0 if not provided.
Returns#
np.ndarray The modified rotation angle(s) after applying the gate error.
Source code in qml_essentials/ansaetze.py
H(wires, noise_params=None)
staticmethod
#
Applies a Hadamard gate to the given wires and adds Noise
Parameters#
wires : Union[int, List[int]] The wire(s) to apply the Hadamard gate to. noise_params : Optional[Dict[str, float]] A dictionary of noise parameters. The following noise gates are supported: -BitFlip: Applies a bit flip error to the given wires. -PhaseFlip: Applies a phase flip error to the given wires. -Depolarizing: Applies a depolarizing channel error to the given wires.
All parameters are optional and default to 0.0 if not provided.
Source code in qml_essentials/ansaetze.py
Noise(wires, noise_params=None)
staticmethod
#
Applies noise to the given wires.
Parameters#
wires : Union[int, List[int]] The wire(s) to apply the noise to. noise_params : Optional[Dict[str, float]] A dictionary of noise parameters. The following noise gates are supported: -BitFlip: Applies a bit flip error to the given wires. -PhaseFlip: Applies a phase flip error to the given wires. -Depolarizing: Applies a depolarizing channel error to the given wires.
All parameters are optional and default to 0.0 if not provided.
Source code in qml_essentials/ansaetze.py
RX(w, wires, noise_params=None)
staticmethod
#
Applies a rotation around the X axis to the given wires and adds Noise
Parameters#
w : float The rotation angle in radians. wires : Union[int, List[int]] The wire(s) to apply the rotation gate to. noise_params : Optional[Dict[str, float]] A dictionary of noise parameters. The following noise gates are supported: -BitFlip: Applies a bit flip error to the given wires. -PhaseFlip: Applies a phase flip error to the given wires. -Depolarizing: Applies a depolarizing channel error to the given wires.
All parameters are optional and default to 0.0 if not provided.
Source code in qml_essentials/ansaetze.py
RY(w, wires, noise_params=None)
staticmethod
#
Applies a rotation around the Y axis to the given wires and adds Noise
Parameters#
w : float The rotation angle in radians. wires : Union[int, List[int]] The wire(s) to apply the rotation gate to. noise_params : Optional[Dict[str, float]] A dictionary of noise parameters. The following noise gates are supported: -BitFlip: Applies a bit flip error to the given wires. -PhaseFlip: Applies a phase flip error to the given wires. -Depolarizing: Applies a depolarizing channel error to the given wires.
All parameters are optional and default to 0.0 if not provided.
Source code in qml_essentials/ansaetze.py
RZ(w, wires, noise_params=None)
staticmethod
#
Applies a rotation around the Z axis to the given wires and adds Noise
Parameters#
w : float The rotation angle in radians. wires : Union[int, List[int]] The wire(s) to apply the rotation gate to. noise_params : Optional[Dict[str, float]] A dictionary of noise parameters. The following noise gates are supported: -BitFlip: Applies a bit flip error to the given wires. -PhaseFlip: Applies a phase flip error to the given wires. -Depolarizing: Applies a depolarizing channel error to the given wires.
All parameters are optional and default to 0.0 if not provided.
Source code in qml_essentials/ansaetze.py
Rot(phi, theta, omega, wires, noise_params=None)
staticmethod
#
Applies a rotation gate to the given wires and adds Noise
Parameters#
phi : float The first rotation angle in radians. theta : float The second rotation angle in radians. omega : float The third rotation angle in radians. wires : Union[int, List[int]] The wire(s) to apply the rotation gate to. noise_params : Optional[Dict[str, float]] A dictionary of noise parameters. The following noise gates are supported: -BitFlip: Applies a bit flip error to the given wires. -PhaseFlip: Applies a phase flip error to the given wires. -Depolarizing: Applies a depolarizing channel error to the given wires.
All parameters are optional and default to 0.0 if not provided.
Source code in qml_essentials/ansaetze.py
Model#
A quantum circuit model.
Source code in qml_essentials/model.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 |
|
execution_type
property
writable
#
Gets the execution type of the model.
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
The execution type, one of 'density', 'expval', or 'probs'. |
noise_params
property
writable
#
Gets the noise parameters of the model.
Returns:
Type | Description |
---|---|
Optional[Dict[str, Union[float, Dict[str, float]]]]
|
Optional[Dict[str, float]]: A dictionary of |
Optional[Dict[str, Union[float, Dict[str, float]]]]
|
noise parameters or None if not set. |
shots
property
writable
#
Gets the number of shots to use for the quantum device.
Returns:
Type | Description |
---|---|
Optional[int]
|
Optional[int]: The number of shots. |
__call__(params=None, inputs=None, noise_params=None, cache=False, execution_type=None, force_mean=False)
#
Perform a forward pass of the quantum circuit.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
params
|
Optional[ndarray]
|
Weight vector of shape [n_layers, n_qubits*n_params_per_layer]. If None, model internal parameters are used. |
None
|
inputs
|
Optional[ndarray]
|
Input vector of shape [1]. If None, zeros are used. |
None
|
noise_params
|
Optional[Dict[str, float]]
|
The noise parameters. Defaults to None which results in the last set noise parameters being used. |
None
|
cache
|
Optional[bool]
|
Whether to cache the results. Defaults to False. |
False
|
execution_type
|
str
|
The type of execution. Must be one of 'expval', 'density', or 'probs'. Defaults to None which results in the last set execution type being used. |
None
|
force_mean
|
bool
|
Whether to average when performing n-local measurements. Defaults to False. |
False
|
Returns:
Type | Description |
---|---|
ndarray
|
np.ndarray: The output of the quantum circuit. The shape depends on the execution_type. - If execution_type is 'expval', returns an ndarray of shape (1,) if output_qubit is -1, else (len(output_qubit),). - If execution_type is 'density', returns an ndarray of shape (2n_qubits, 2n_qubits). - If execution_type is 'probs', returns an ndarray of shape (2n_qubits,) if output_qubit is -1, else (2len(output_qubit),). |
Source code in qml_essentials/model.py
__init__(n_qubits, n_layers, circuit_type, data_reupload=True, encoding=Gates.RX, initialization='random', initialization_domain=[0, 2 * np.pi], output_qubit=-1, shots=None, random_seed=1000, as_pauli_circuit=False)
#
Initialize the quantum circuit model. Parameters will have the shape [impl_n_layers, parameters_per_layer] where impl_n_layers is the number of layers provided and added by one depending if data_reupload is True and parameters_per_layer is given by the chosen ansatz.
The model is initialized with the following parameters as defaults: - noise_params: None - execution_type: "expval" - shots: None
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n_qubits
|
int
|
The number of qubits in the circuit. |
required |
n_layers
|
int
|
The number of layers in the circuit. |
required |
circuit_type
|
(str, Circuit)
|
The type of quantum circuit to use. If None, defaults to "no_ansatz". |
required |
data_reupload
|
bool
|
Whether to reupload data to the quantum device on each measurement. Defaults to True. |
True
|
encoding
|
Union[str, Callable, List[str], List[Callable]]
|
The unitary to use for encoding the input data. Can be a string (e.g. "RX") or a callable (e.g. qml.RX). Defaults to qml.RX. If input is multidimensional it is assumed to be a list of unitaries or a list of strings. |
RX
|
initialization
|
str
|
The strategy to initialize the parameters. Can be "random", "zeros", "zero-controlled", "pi", or "pi-controlled". Defaults to "random". |
'random'
|
output_qubit
|
(List[int], int)
|
The index of the output qubit (or qubits). When set to -1 all qubits are measured, or a global measurement is conducted, depending on the execution type. |
-1
|
shots
|
Optional[int]
|
The number of shots to use for the quantum device. Defaults to None. |
None
|
random_seed
|
int
|
seed for the random number generator in initialization is "random" and for random noise parameters. Defaults to 1000. |
1000
|
as_pauli_circuit
|
bool
|
whether the circuit is transformed to a Pauli-Clifford circuit as described by Nemkov et al. (https://doi.org/10.1103/PhysRevA.108.032406), which is required for analytical Fourier coefficient computation. Defaults to False. |
False
|
Returns:
Type | Description |
---|---|
None
|
None |
Source code in qml_essentials/model.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
|
_apply_general_noise()
#
Applies general types of noise the full circuit (in contrast to gate errors, applied directly at gate level, see Gates.Noise).
Possible types of noise are
- AmplitudeDamping (specified through probability)
- PhaseDamping (specified through probability)
- ThermalRelaxation (specified through a dict, containing keys "t1", "t2", "t_factor")
- Measurement (specified through probability)
Source code in qml_essentials/model.py
_apply_state_prep_noise()
#
Applies a state preparation error on each qubit according to the probability for StatePreparation provided in the noise_params.
Source code in qml_essentials/model.py
_circuit(params, inputs)
#
Creates a circuit with noise.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
params
|
ndarray
|
weight vector of shape [n_layers, n_qubits*n_params_per_layer] |
required |
inputs
|
ndarray
|
input vector of size 1 |
required |
Returns: Union[float, np.ndarray]: Expectation value of PauliZ(0) of the circuit if state_vector is False and expval is True, otherwise the density matrix of all qubits.
Source code in qml_essentials/model.py
_forward(params=None, inputs=None, noise_params=None, cache=False, execution_type=None, force_mean=False)
#
Perform a forward pass of the quantum circuit.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
params
|
Optional[ndarray]
|
Weight vector of shape [n_layers, n_qubits*n_params_per_layer]. If None, model internal parameters are used. |
None
|
inputs
|
Optional[ndarray]
|
Input vector of shape [1]. If None, zeros are used. |
None
|
noise_params
|
Optional[Dict[str, float]]
|
The noise parameters. Defaults to None which results in the last set noise parameters being used. |
None
|
cache
|
Optional[bool]
|
Whether to cache the results. Defaults to False. |
False
|
execution_type
|
str
|
The type of execution. Must be one of 'expval', 'density', or 'probs'. Defaults to None which results in the last set execution type being used. |
None
|
force_mean
|
bool
|
Whether to average when performing n-local measurements. Defaults to False. |
False
|
Returns:
Type | Description |
---|---|
ndarray
|
np.ndarray: The output of the quantum circuit. The shape depends on the execution_type. - If execution_type is 'expval', returns an ndarray of shape (1,) if output_qubit is -1, else (len(output_qubit),). - If execution_type is 'density', returns an ndarray of shape (2n_qubits, 2n_qubits). - If execution_type is 'probs', returns an ndarray of shape (2n_qubits,) if output_qubit is -1, else (2len(output_qubit),). |
Raises:
Type | Description |
---|---|
NotImplementedError
|
If the number of shots is not None or if the expectation value is True. |
Source code in qml_essentials/model.py
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 |
|
_iec(inputs, data_reupload, enc, noise_params=None)
#
Creates an AngleEncoding using RX gates
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs
|
ndarray
|
length of vector must be 1, shape (1,) |
required |
data_reupload
|
bool
|
Whether to reupload the data for the IEC or not, default is True. |
required |
Returns:
Type | Description |
---|---|
None
|
None |
Source code in qml_essentials/model.py
_inputs_validation(inputs)
#
Validate the inputs to be a 2D numpy array of shape (batch_size, n_inputs).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs
|
Union[None, List, float, int, ndarray]
|
The input to validate. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
np.ndarray: The validated input. |
Source code in qml_essentials/model.py
_params_validation(params)
#
Sets the parameters when calling the quantum circuit
Parameters:
Name | Type | Description | Default |
---|---|---|---|
params
|
ndarray
|
The parameters used for the call |
required |
Source code in qml_essentials/model.py
get_circuit_depth(inputs=None)
#
Obtain circuit depth for the model
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs
|
Optional[ndarray]
|
The inputs, with which to call the circuit. Defaults to None. |
None
|
Returns:
Name | Type | Description |
---|---|---|
int |
int
|
Circuit depth (longest path of gates in circuit.) |
Source code in qml_essentials/model.py
get_specs(inputs=None)
#
Get pennylane specs for the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs
|
Optional[ndarray]
|
The inputs, with which to call the circuit. Defaults to None. |
None
|
Returns:
Name | Type | Description |
---|---|---|
dict |
dict
|
Dictionary of specs. The key "resources" contains information about the circuit size and gate statistics. |
Source code in qml_essentials/model.py
initialize_params(rng, repeat=None, initialization=None, initialization_domain=None)
#
Initializes the parameters of the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
rng
|
A random number generator to use for initialization. |
required | |
repeat
|
int
|
The number of times to repeat the parameters. If None, the number of layers is used. |
None
|
initialization
|
str
|
The strategy to use for parameter initialization. If None, the strategy specified in the constructor is used. |
None
|
initialization_domain
|
List[float]
|
The domain to use for parameter initialization. If None, the domain specified in the constructor is used. |
None
|
Returns:
Type | Description |
---|---|
None
|
None |
Source code in qml_essentials/model.py
Entanglement#
Source code in qml_essentials/entanglement.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
|
meyer_wallach(model, n_samples, seed, **kwargs)
staticmethod
#
Calculates the entangling capacity of a given quantum circuit using Meyer-Wallach measure.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Callable
|
Function that models the quantum circuit. |
required |
n_samples
|
int
|
Number of samples per qubit. If None or < 0, the current parameters of the model are used |
required |
seed
|
Optional[int]
|
Seed for the random number generator. |
required |
kwargs
|
Any
|
Additional keyword arguments for the model function. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
float |
float
|
Entangling capacity of the given circuit. It is guaranteed to be between 0.0 and 1.0. |
Source code in qml_essentials/entanglement.py
Expressibility#
Source code in qml_essentials/expressibility.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
|
_haar_probability(fidelity, n_qubits)
staticmethod
#
Calculates theoretical probability density function for random Haar states as proposed by Sim et al. (https://arxiv.org/abs/1905.10876).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
fidelity
|
float
|
fidelity of two parameter assignments in [0, 1] |
required |
n_qubits
|
int
|
number of qubits in the quantum system |
required |
Returns:
Name | Type | Description |
---|---|---|
float |
float
|
probability for a given fidelity |
Source code in qml_essentials/expressibility.py
_sample_haar_integral(n_qubits, n_bins)
staticmethod
#
Calculates theoretical probability density function for random Haar states as proposed by Sim et al. (https://arxiv.org/abs/1905.10876) and bins it into a 2D-histogram.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n_qubits
|
int
|
number of qubits in the quantum system |
required |
n_bins
|
int
|
number of histogram bins |
required |
Returns:
Type | Description |
---|---|
ndarray
|
np.ndarray: probability distribution for all fidelities |
Source code in qml_essentials/expressibility.py
_sample_state_fidelities(model, x_samples, n_samples, seed, kwargs)
staticmethod
#
Compute the fidelities for each pair of input samples and parameter sets.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Callable
|
Function that models the quantum circuit. |
required |
x_samples
|
ndarray
|
Array of shape (n_input_samples, n_features) containing the input samples. |
required |
n_samples
|
int
|
Number of parameter sets to generate. |
required |
seed
|
int
|
Random number generator seed. |
required |
kwargs
|
Any
|
Additional keyword arguments for the model function. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
np.ndarray: Array of shape (n_input_samples, n_samples) |
ndarray
|
containing the fidelities. |
Source code in qml_essentials/expressibility.py
haar_integral(n_qubits, n_bins, cache=True, scale=False)
staticmethod
#
Calculates theoretical probability density function for random Haar states as proposed by Sim et al. (https://arxiv.org/abs/1905.10876) and bins it into a 3D-histogram.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n_qubits
|
int
|
number of qubits in the quantum system |
required |
n_bins
|
int
|
number of histogram bins |
required |
cache
|
bool
|
whether to cache the haar integral |
True
|
scale
|
bool
|
whether to scale the number of bins |
False
|
Returns:
Type | Description |
---|---|
Tuple[ndarray, ndarray]
|
Tuple[np.ndarray, np.ndarray]: - x component (bins): the input domain - y component (probabilities): the haar probability density funtion for random Haar states |
Source code in qml_essentials/expressibility.py
kullback_leibler_divergence(vqc_prob_dist, haar_dist)
staticmethod
#
Calculates the KL divergence between two probability distributions (Haar probability distribution and the fidelity distribution sampled from a VQC).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
vqc_prob_dist
|
ndarray
|
VQC fidelity probability distribution. Should have shape (n_inputs_samples, n_bins) |
required |
haar_dist
|
ndarray
|
Haar probability distribution with shape. Should have shape (n_bins, ) |
required |
Returns:
Type | Description |
---|---|
ndarray
|
np.ndarray: Array of KL-Divergence values for all values in axis 1 |
Source code in qml_essentials/expressibility.py
state_fidelities(seed, n_samples, n_bins, model, n_input_samples=0, input_domain=None, scale=False, **kwargs)
staticmethod
#
Sample the state fidelities and histogram them into a 2D array.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
seed
|
int
|
Random number generator seed. |
required |
n_samples
|
int
|
Number of parameter sets to generate. |
required |
n_bins
|
int
|
Number of histogram bins. |
required |
n_input_samples
|
int
|
Number of input samples. |
0
|
input_domain
|
List[float]
|
Input domain. |
None
|
model
|
Callable
|
Function that models the quantum circuit. |
required |
scale
|
bool
|
Whether to scale the number of samples and bins. |
False
|
kwargs
|
Any
|
Additional keyword arguments for the model function. |
{}
|
Returns:
Type | Description |
---|---|
Tuple[ndarray, ndarray, ndarray]
|
Tuple[np.ndarray, np.ndarray, np.ndarray]: Tuple containing the input samples, bin edges, and histogram values. |
Source code in qml_essentials/expressibility.py
Coefficients#
Source code in qml_essentials/coefficients.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
|
evaluate_Fourier_series(coefficients, input, frequencies=None)
staticmethod
#
Evaluate the function value of a Fourier series at one point.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
coefficients
|
ndarray
|
Coefficients of the Fourier series. |
required |
input
|
float
|
Point at which to evaluate the function. |
required |
frequencies
|
Optional[ndarray]
|
Corresponding frequencies in the form [-n_freq, ..., 0, ..., n_freq]. If None, the number of coefficients is to obtain sequential frequencies. |
None
|
Returns:
Name | Type | Description |
---|---|---|
float |
float
|
The function value at the input point. |
Source code in qml_essentials/coefficients.py
get_psd(coeffs)
staticmethod
#
Calculates the power spectral density (PSD) from given Fourier coefficients.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
coeffs
|
ndarray
|
The Fourier coefficients. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
np.ndarray: The power spectral density. |
Source code in qml_essentials/coefficients.py
get_spectrum(model, mfs=1, mts=1, shift=False, trim=False, **kwargs)
staticmethod
#
Extracts the coefficients of a given model using a FFT (np-fft).
Note that the coefficients are complex numbers, but the imaginary part of the coefficients should be very close to zero, since the expectation values of the Pauli operators are real numbers.
It can perform oversampling in both the frequency and time domain
using the mfs
and mts
arguments.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Model
|
The model to sample. |
required |
mfs
|
int
|
Multiplicator for the highest frequency. Default is 2. |
1
|
mts
|
int
|
Multiplicator for the number of time samples. Default is 1. |
1
|
shift
|
bool
|
Whether to apply np-fftshift. Default is False. |
False
|
trim
|
bool
|
Whether to remove the Nyquist frequency if spectrum is even. Default is False. |
False
|
kwargs
|
Any
|
Additional keyword arguments for the model function. |
{}
|
Returns:
Type | Description |
---|---|
ndarray
|
np.ndarray: The sampled Fourier coefficients. |